[1] A suite of climate change indices derived from daily temperature and precipitation data, with a primary focus on extreme events, were computed and analyzed. By setting an exact formula for each index and using specially designed software, analyses done in different countries have been combined seamlessly. This has enabled the presentation of the most up-to-date and comprehensive global picture of trends in extreme temperature and precipitation indices using results from a number of workshops held in data-sparse regions and high-quality station data supplied by numerous scientists world wide. Seasonal and annual indices for the period 1951-2003 were gridded. Trends in the gridded fields were computed and tested for statistical significance. Results showed widespread significant changes in temperature extremes associated with warming, especially for those indices derived from daily minimum temperature. Over 70% of the global land area sampled showed a significant decrease in the annual occurrence of cold nights and a significant increase in the annual occurrence of warm nights. Some regions experienced a more than doubling of these indices. This implies a positive shift in the distribution of daily minimum temperature throughout the globe. Daily maximum temperature indices showed similar changes but with smaller magnitudes. Precipitation changes showed a widespread and significant increase, but the changes are much less spatially coherent compared with temperature change. Probability distributions of indices derived from approximately 200 temperature and 600 precipitation stations, with nearcomplete data for 1901-2003 and covering a very large region of the Northern Hemisphere midlatitudes (and parts of Australia for precipitation) were analyzed for the periods 1901-1950, 1951-1978 and 1979-2003. Results indicate a significant warming throughout the 20th century. Differences in temperature indices distributions are particularly pronounced between the most recent two periods and for those indices related to minimum temperature. An analysis of those indices for which seasonal time series are available shows that these changes occur for all seasons although they are generally least pronounced for September to November. Precipitation indices show a tendency toward wetter conditions throughout the 20th century.
† The contribution of R. J. Allan was written in the course of his employment at the Met Office, UK, and is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland. ‡ The contributions of these authors were prepared as part of their official duties as US Federal Government employees.The Twentieth Century Reanalysis (20CR) project is an international effort to produce a comprehensive global atmospheric circulation dataset spanning the twentieth century, assimilating only surface pressure reports and using observed monthly sea-surface temperature and sea-ice distributions as boundary conditions. is similar to that of current three-day operational NWP forecasts. Intercomparisons over the second half-century of these surface-based reanalyses with other reanalyses that also make use of upper-air and satellite data are equally encouraging.It is anticipated that the 20CR dataset will be a valuable resource to the climate research community for both model validations and diagnostic studies. Some surprising results are already evident. For instance, the long-term trends of indices representing the North Atlantic Oscillation, the tropical Pacific Walker Circulation, and the Pacific-North American pattern are weak or non-existent over the full period of record. The long-term trends of zonally averaged precipitation minus evaporation also differ in character from those in climate model simulations of the twentieth century.
A new global dataset of derived indicators has been compiled to clarify whether frequency and/or severity of climatic extremes changed during the second half of the 20th century. This period provides the best spatial coverage of homogenous daily series, which can be used for calculating the proportion of global land area exhibiting a significant change in extreme or severe weather. The authors chose 10 indicators of extreme climatic events, defined from a larger selection, that could be applied to a large variety of climates. It was assumed that data producers were more inclined to release derived data in the form of annual indicator time series than releasing their original daily observations. The indicators are based on daily maximum and minimum temperature series, as well as daily totals of precipitation, and represent changes in all seasons of the year. Only time series which had 40 yr or more of almost complete records were used. A total of about 3000 indicator time series were extracted from national climate archives and collated into the unique dataset described here. Global maps showing significant changes from one multi-decadal period to another during the interval from 1946 to 1999 were produced. Coherent spatial patterns of statistically significant changes emerge, particularly an increase in warm summer nights, a decrease in the number of frost days and a decrease in intra-annual extreme temperature range. All but one of the temperaturebased indicators show a significant change. Indicators based on daily precipitation data show more mixed patterns of change but significant increases have been seen in the extreme amount derived from wet spells and number of heavy rainfall events. We can conclude that a significant proportion of the global land area was increasingly affected by a significant change in climatic extremes during the second half of the 20th century. These clear signs of change are very robust; however, large areas are still not represented, especially Africa and South America.
A database is described that has been designed to fulfill the need for daily climate data over global land areas. The dataset, known as Global Historical Climatology Network (GHCN)-Daily, was developed for a wide variety of potential applications, including climate analysis and monitoring studies that require data at a daily time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset contains records from over 80 000 stations in 180 countries and territories, and its processing system produces the official archive for U.S. daily data. Variables commonly include maximum and minimum temperature, total daily precipitation, snowfall, and snow depth; however, about two-thirds of the stations report precipitation only. Quality assurance checks are routinely applied to the full dataset, but the data are not homogenized to account for artifacts associated with the various eras in reporting practice at any particular station (i.e., for changes in systematic bias). Daily updates are provided for many of the station records in GHCN-Daily. The dataset is also regularly reconstructed, usually once per week, from its 20+ data source components, ensuring that the dataset is broadly synchronized with its growing list of constituent sources. The daily updates and weekly reprocessed versions of GHCN-Daily are assigned a unique version number, and the most recent dataset version is provided on the GHCN-Daily website for free public access. Each version of the dataset is also archived at the NOAA/National Climatic Data Center in perpetuity for future retrieval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.