The monthly global 28 3 28 Extended Reconstructed Sea Surface Temperature (ERSST) has been revised and updated from version 4 to version 5. This update incorporates a new release of ICOADS release 3.0 (R3.0), a decade of near-surface data from Argo floats, and a new estimate of centennial sea ice from HadISST2. A number of choices in aspects of quality control, bias adjustment, and interpolation have been substantively revised. The resulting ERSST estimates have more realistic spatiotemporal variations, better representation of high-latitude SSTs, and ship SST biases are now calculated relative to more accurate buoy measurements, while the global long-term trend remains about the same. Progressive experiments have been undertaken to highlight the effects of each change in data source and analysis technique upon the final product. The reconstructed SST is systematically decreased by 0.0778C, as the reference data source is switched from ship SST in ERSSTv4 to modern buoy SST in ERSSTv5. Furthermore, high-latitude SSTs are decreased by 0.18-0.28C by using sea ice concentration from HadISST2 over HadISST1. Changes arising from remaining innovations are mostly important at small space and time scales, primarily having an impact where and when input observations are sparse. Cross validations and verifications with independent modern observations show that the updates incorporated in ERSSTv5 have improved the representation of spatial variability over the global oceans, the magnitude of El Niño and La Niña events, and the decadal nature of SST changes over 1930s-40s when observation instruments changed rapidly. Both long-(1900Both long-( -2015 and short-term (2000-15) SST trends in ERSSTv5 remain significant as in ERSSTv4.
A database is described that has been designed to fulfill the need for daily climate data over global land areas. The dataset, known as Global Historical Climatology Network (GHCN)-Daily, was developed for a wide variety of potential applications, including climate analysis and monitoring studies that require data at a daily time resolution (e.g., assessments of the frequency of heavy rainfall, heat wave duration, etc.). The dataset contains records from over 80 000 stations in 180 countries and territories, and its processing system produces the official archive for U.S. daily data. Variables commonly include maximum and minimum temperature, total daily precipitation, snowfall, and snow depth; however, about two-thirds of the stations report precipitation only. Quality assurance checks are routinely applied to the full dataset, but the data are not homogenized to account for artifacts associated with the various eras in reporting practice at any particular station (i.e., for changes in systematic bias). Daily updates are provided for many of the station records in GHCN-Daily. The dataset is also regularly reconstructed, usually once per week, from its 20+ data source components, ensuring that the dataset is broadly synchronized with its growing list of constituent sources. The daily updates and weekly reprocessed versions of GHCN-Daily are assigned a unique version number, and the most recent dataset version is provided on the GHCN-Daily website for free public access. Each version of the dataset is also archived at the NOAA/National Climatic Data Center in perpetuity for future retrieval.
Walking back talk of the end of warming Previous analyses of global temperature trends during the first decade of the 21st century seemed to indicate that warming had stalled. This allowed critics of the idea of global warming to claim that concern about climate change was misplaced. Karl et al. now show that temperatures did not plateau as thought and that the supposed warming “hiatus” is just an artifact of earlier analyses. Warming has continued at a pace similar to that of the last half of the 20th century, and the slowdown was just an illusion. Science , this issue p. 1469
We outline a new and improved uncertainty analysis for the Goddard Institute for Space Studies Surface Temperature product version 4 (GISTEMP v4). Historical spatial variations in surface temperature anomalies are derived from historical weather station data and ocean data from ships, buoys, and other sensors. Uncertainties arise from measurement uncertainty, changes in spatial coverage of the station record, and systematic biases due to technology shifts and land cover changes. Previously published uncertainty estimates for GISTEMP included only the effect of incomplete station coverage. Here, we update this term using currently available spatial distributions of source data, state‐of‐the‐art reanalyses, and incorporate independently derived estimates for ocean data processing, station homogenization, and other structural biases. The resulting 95% uncertainties are near 0.05 °C in the global annual mean for the last 50 years and increase going back further in time reaching 0.15 °C in 1880. In addition, we quantify the benefits and inherent uncertainty due to the GISTEMP interpolation and averaging method. We use the total uncertainties to estimate the probability for each record year in the GISTEMP to actually be the true record year (to that date) and conclude with 87% likelihood that 2016 was indeed the hottest year of the instrumental period (so far).
[1] Since the early 1990s the Global Historical Climatology Network-Monthly (GHCN-M) data set has been an internationally recognized source of data for the study of observed variability and change in land surface temperature. It provides monthly mean temperature data for 7280 stations from 226 countries and territories, ongoing monthly updates of more than 2000 stations to support monitoring of current and evolving climate conditions, and homogeneity adjustments to remove non-climatic influences that can bias the observed temperature record. The release of version 3 monthly mean temperature data marks the first major revision to this data set in over ten years. It introduces a number of improvements and changes that include consolidating "duplicate" series, updating records from recent decades, and the use of new approaches to homogenization and quality assurance. Although the underlying structure of the data set is significantly different than version 2, conclusions regarding the rate of warming in global land surface temperature are largely unchanged.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.