We outline a new and improved uncertainty analysis for the Goddard Institute for Space Studies Surface Temperature product version 4 (GISTEMP v4). Historical spatial variations in surface temperature anomalies are derived from historical weather station data and ocean data from ships, buoys, and other sensors. Uncertainties arise from measurement uncertainty, changes in spatial coverage of the station record, and systematic biases due to technology shifts and land cover changes. Previously published uncertainty estimates for GISTEMP included only the effect of incomplete station coverage. Here, we update this term using currently available spatial distributions of source data, state‐of‐the‐art reanalyses, and incorporate independently derived estimates for ocean data processing, station homogenization, and other structural biases. The resulting 95% uncertainties are near 0.05 °C in the global annual mean for the last 50 years and increase going back further in time reaching 0.15 °C in 1880. In addition, we quantify the benefits and inherent uncertainty due to the GISTEMP interpolation and averaging method. We use the total uncertainties to estimate the probability for each record year in the GISTEMP to actually be the true record year (to that date) and conclude with 87% likelihood that 2016 was indeed the hottest year of the instrumental period (so far).
The El Niño-Southern Oscillation (ENSO) is the dominant source of seasonal climate predictability. This study quantifies the historical impact of ENSO on seasonal precipitation through an update of the global ENSO teleconnection maps of Mason and Goddard (2001). Many additional teleconnections are detected due to better handling of missing values and 20 years of additional, higher quality data. These global teleconnection maps are used as deterministic and probabilistic empirical seasonal forecasts in a verification study. The probabilistic empirical forecast model outperforms climatology in the tropics demonstrating the value of a forecast derived from the expected precipitation anomalies given the ENSO phase. Incorporating uncertainty due to SST prediction shows that teleconnection maps are skillful in predicting tropical precipitation up to a lead time of four months. The historical IRI seasonal forecasts generally outperform the empirical forecasts made with the teleconnection maps, demonstrating the additional value of state-of-the-art dynamical-based seasonal forecast systems. Additionally, the probabilistic empirical seasonal forecasts are proposed as reference forecasts for future skill assessments of real-time seasonal forecast systems.
Uncertainty in climate projections is driven by three components: scenario uncertainty, intermodel uncertainty, and internal variability. Although socioeconomic climate impact studies increasingly take into account the first two components, little attention has been paid to the role of internal variability, although underestimating this uncertainty may lead to underestimating the socioeconomic costs of climate change. Using large ensembles from seven coupled general circulation models with a total of 414 model runs, we partition the climate uncertainty in classic dose–response models relating county-level corn yield, mortality, and per-capita gross domestic product to temperature in the continental United States. The partitioning of uncertainty depends on the time frame of projection, the impact model, and the geographic region. Internal variability represents more than 50% of the total climate uncertainty in certain projections, including mortality projections for the early 21st century, although its relative influence decreases over time. We recommend including uncertainty due to internal variability for many projections of temperature-driven impacts, including early-century and midcentury projections, projections in regions with high internal variability such as the Upper Midwest United States, and impacts driven by nonlinear relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.