The inhomogeneous 3-Kelvin (3K) phase of the eutectic Sr2RuO4 with Ru inclusions nucleates superconductivity at the interface between Ru and Sr2RuO4. The structure of the interface state and its physical properties are examined here. Two superconducting phases are identified between the transitions to the bulk phase at 1.5 K and to the 3K phase. The nucleation of the 3K phase results in a state conserving time reversal symmetry, which generates an intrinsically frustrated superconducting network in samples with many Ru inclusions. At a lower temperature (> 1.5 K), a discontinuous (first order) transition to an interface state breaking time reversal symmetry is found leading to an unfrustrated network phase. It is shown that this phase transition located at a temperature between 1.5 and 3 K would yield the anomalous property showing that the critical current in such a network depends on the sign of the current, reproducing recent experimental observations.
A refined variational wave function for the two-dimensional repulsive Hubbard model is studied numerically, with the aim of approaching the difficult crossover regime of intermediate values of U. The issue of a superconducting ground state with d-wave symmetry is investigated for an average electron density n=0.8125 and for U=8t. Due to finite-size effects a clear-cut answer to this fundamental question has not yet been reached.Comment: 5 pages, 1 figure, Proc. 30th Int. Conf. of Theoretical Physics, Ustron, Poland, 2006, to be published in phys. stat. so
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.