International audienceOrthogonal frequency-division multiplexing (OFDM), with the help of a cyclic prefix, enables low complexity frequency domain equalization, but suffers from a high crest factor. Single carrier with cyclic prefix (SC-CP) has the same advantage with similar performance, but with a lower crest factor and enhanced robustness to phase noise. The cyclic prefix is overhead, so we put more information in it by implementing this cyclic prefix as a training sequence (TS). This new training aided frequency domain equalized single carrier (TASC) scheme offers us additional known symbols and enables better synchronization and (potentially) channel estimation, with the same performance as SC-CP
Abstract-Orthogonal frequency-division multiplexing with cyclic prefix enables low-cost frequency-domain mitigation of multipath distortion. However, to determine the equalizer coefficients, knowledge of the channel frequency response is required. While a straightforward approach is to measure the response to a known pilot symbol sequence, existing literature reports a significant performance gain when exploiting the frequency correlation properties of the channel. Expressing this correlation by the finite delay spread, we build a deterministic model parametrized by the channel impulse response and, based on this model, derive the maximum-likelihood channel estimator. In addition to being optimal (up to the modeling error), this estimator receives an elegant time-frequency interpretation. As a result, it has a significantly lower complexity than previously published methods.Index Terms-Equalizers, orthogonal frequency-division multiplexing (OFDM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.