Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days.Correspondence to: T. Leblanc (leblanc@tmf.jpl.nasa.gov) A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the FrostPoint hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5 % of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere.Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, Published by Copernicus Publications on behalf of the European Geosciences Union. T. Leblanc et al.: MOHAVE-2009: overview of campaign operations and resultswith only a 3 % (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and midtroposphere (2-5 % wet bias over the range 3-10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50 % between 10 km and 15 km), preventing their use as an independent measurement in the UTLS.The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10 % dry bias of the Water Vapor Millimeterwave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed.Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7 % (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars.Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheri...
The experiment investigated the effect of different training materials (a technical story verius a set of diagnostic heuristics) on the training and transfer of faultfinding skill. Two simulated chemical plants were used as the fault-finding domain. During the training session, fault-finding was measured before and after mastery of the training material and after practice in fault-finding. The latter test involved 'old' faults and 'new' faults from the same and different categories to those encountered during training. Subsequently transfer was measured to a second plant involving the same components and variables in a different layout to the plant used for training. Both conditions improved at fault-finding both after mastery of the training material and after practice when the test involved 'old' faults. The technical story condition performed better than the diagnostic heuristics condition on 'new' same category faults although neither condition was able to solve 'new' different category faults. Tr:tnsfer to the second plant was high and positive for both training conditions. The results are discussed with regard to the role of 'theory' in training fault-finding. It is suggested that in order to explain such training and transfer effects, it i:; necessary to define terms more precisely and to attempt to describe the cognitive representations of fault-finding skill which are developed by different t ri~itring nict hods.
This study investigated the effect of training with either a qualitative model of plant functioning or a set of diagnostic heuristics on the transfer of fault-finding. Two simulated chemical plants were used. After training both conditions improve in accuracy of diagnosis of previously encountered faults, though the qualitative model condition is superior at transfer to novel faults. However, neither training condition exhibited positive transfer of training, in terms of accuracy, when tested on a second plant involving a recycle loop. Different reasons may explain this lack of transfer for each condition. Significantly, qualitative differences were found between the training conditions in the order in which plant variables were examined during fault-finding. These qualitative differences persisted in transfer to the second plant but only for faults whose symptoms were not affected by the recycle loop. Such qualitative measures offer a means of inferring the cognitive processes inculcated by different training programs.
The Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE) 2009 campaign took place on 11–27 October 2009 at the JPL Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days. <br><br> A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the Frost-Point hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5 % of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere. <br><br> Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, with only a 3 % (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and mid-troposphere (2–5 % wet bias over the range 3–10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50 % between 10 km and 15 km), preventing their use as an independent measurement in the UTLS. <br><br> The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10 % dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed. <br><br> Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7 % (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars. <br><br> Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identificat...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.