Objectives: To develop and test a new concept of the degradation kinetics of newly developed coronary stents consisting of magnesium alloys. Methods: Design of a coronary stent prototype consisting of the non-commercial magnesium based alloy AE21 (containing 2% aluminium and 1% rare earths) with an expected 50% loss of mass within six months. Eleven domestic pigs underwent coronary implantation of 20 stents (overstretch injury). Results: No stent caused major problems during implantation or showed signs of initial breakage in the histological evaluation. There were no thromboembolic events. Quantitative angiography at follow up showed a significant (p < 0.01) 40% loss of perfused lumen diameter between days 10 and 35, corresponding to neointima formation seen on histological analysis, and a 25% re-enlargement (p < 0.05) between days 35 and 56 caused by vascular remodelling (based on intravascular ultrasound) resulting from the loss of mechanical integrity of the stent. Inflammation (p < 0.001) and neointimal plaque area (p < 0.05) depended significantly on injury score. Planimetric degradation correlated with time (r = 0.67, p < 0.01). Conclusion: Vascular implants consisting of magnesium alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants. P ermanent metallic implants are key treatment options in cardiovascular interventions. However, specific drawbacks limit their more widespread use. These limitations include thrombogenicity, permanent physical irritation, mismatches in mechanical behaviour between stented and non-stented vessel areas, long term endothelial dysfunction, inability to adapt to growth, non-permissive or disadvantageous characteristics for later surgical revascularisation, and chronic inflammatory local reactions. Degradable implants offer more physiological repair, reconstitution of local vascular compliance, and a temporary, limited, longitudinal, and radial straightening effect, including the possibility for growth. These implants are "fulfilling the mission and stepping away" 1 and may act as a new biomedical tool satisfying the requirements of compatibility and integration.2 However, most biodegradable synthetic polymer stents must have greater bulk to approximate the mechanical performance required in arteries. Many also induce exaggerated acute and chronic inflammatory responses during degradation.
3To address this issue, we developed and tested a new concept of degradation after endovascular implantation of tailored magnesium alloys. We anticipated a more useful combination of mechanical stability over a limited time and complete degradation of the implants.
METHODS
AlloysMagnesium alloys containing small amounts of aluminium, manganese, zinc, lithium, and rare earth elements were preselected for their mechanical aspects and tested in vitro for degradation kinetics (synthetic seawater, Ringer lactate, and porcine and human serum; calculated stent half lives for different magnesium alloys were between minutes and about half a year) and the potential in...
After 3 months, the primary clinical patency and limb salvage rates suggest a potentially promising performance of these AMS devices in the treatment of below-knee lesions in CLI patients.
Elective coronary stenting was effective in the treatment of restenosis after balloon angioplasty. Stenting resulted in a lower rate of recurrent stenosis despite a higher incidence of subacute thrombosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.