The final product of galaxy evolution through cosmic time is the population of galaxies in the local universe. These galaxies are also those that can be studied in most detail, thus providing a stringent benchmark for our understanding of galaxy evolution. Through the huge success of spectroscopic single-fiber, statistical surveys of the Local Universe in the last decade, it has become clear, however, that an authoritative observational description of galaxies will involve measuring their spatially resolved properties over their full optical extent for a statistically significant sample. We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction. We summarize the survey goals and design, including sample selection and observational strategy. We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of ∼600 galaxies in the Local Universe (0.005 < z < 0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK integral field unit (IFU), with a hexagonal field-of-view of ∼1.3 , with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 Å, using two overlapping setups (V500 and V1200), with different resolutions: R ∼ 850 and R ∼ 1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis: (i) the final datacubes reach a 3σ limiting surface brightness depth of ∼23.0 mag/arcsec 2 for the V500 grating data (∼22.8 mag/arcsec 2 for V1200); (ii) about ∼70% of the covered field-of-view is above this 3σ limit; (iii) the data have a blue-to-red relative flux calibration within a few percent in most of the wavelength range; (iv) the absolute flux calibration is accurate within ∼8% with respect to SDSS; (v) the measured spectral resolution is ∼85 km s −1 for V1200 (∼150 km s −1 for V500); (vi) the estimated accuracy of the wavelength calibration is ∼5 km s −1 for the V1200 data (∼10 km s −1 for the V500 data); (vii) the aperture matched CALIFA and SDSS spectra are qualitatively and quantitatively similar. Finally, we show that we are able to carry out all measurements indicated above, recovering the properties of the stellar populations, the ionized gas and the kinematics of both components. The associated maps illustrate the spatial variation of...
The use of integral field spectroscopy is since recently allowing to measure the emission line fluxes of an increasingly large number of star-forming galaxies, both locally and at high redshift. Many studies have used these fluxes to derive the gas-phase metallicity of the galaxies by applying the so-called strong-line methods. However, the metallicity indicators that these datasets use were empirically calibrated using few direct abundance data points (T e -based measurements). Furthermore, a precise determination of the prediction intervals of these indicators is commonly lacking in these calibrations. Such limitations might lead to systematic errors in determining the gas-phase metallicity, especially at high redshift, which might have a strong impact on our understanding of the chemical evolution of the Universe. The main goal of this study is to review the most widely used empirical oxygen calibrations, O3N2 and N2, by using new direct abundance measurements. We pay special attention to (1) the expected uncertainty of these calibrations as a function of the index value or abundance derived and (2) the presence of possible systematic offsets. This is possible thanks to the analysis of the most ambitious compilation of T e -based H ii regions to date. This new dataset compiles the T e -based abundances of 603 H ii regions extracted from the literature but also includes new measurements from the CALIFA survey. Besides providing new and improved empirical calibrations for the gas abundance, we also present a comparison between our revisited calibrations with a total of 3423 additional CALIFA H ii complexes with abundances derived using the ONS calibration from the literature. The combined analysis of T e -based and ONS abundances allows us to derive their most accurate calibration to date for both the O3N2 and N2 singleratio indicators, in terms of all statistical significance, quality, and coverage of the parameters space. In particular, we infer that these indicators show shallower abundance dependencies and statistically significant offsets compared to others'. The O3N2 and N2 indicators can be empirically applied to derive oxygen abundances calibrations from either direct abundance determinations with random errors of 0.18 and 0.16, respectively, or from indirect ones (but based on a large amount of data), reaching an average precision of 0.08 and 0.09 dex (random) and 0.02 and 0.08 dex (systematic; compared to the direct estimations), respectively.
We present a detailed analysis of a large sample of 31 low-redshift, mostly radio-quiet type 1 quasi-stellar objects (QSOs) observed with integral field spectroscopy to study their extended emission-line regions (EELRs). We focus on the ionisation state of the gas, size and luminosity of extended narrow line regions (ENLRs), which corresponds to those parts of the EELR dominated by ionisation from the QSO, as well as the kinematics of the ionised gas. We detect EELRs around 19 of our 31 QSOs (61%) after deblending the unresolved QSO emission and the extended host galaxy light in the integral field data with a new dedicated algorithm. Based on standard emission-line diagnostics we identify 13 EELRs to be entirely ionised by the QSO radiation, 3 EELRs are composed of H ii regions and 3 EELRs display signatures of both ionisation mechanisms at different locations. The typical size of the ENLR is ∼10 kpc at a median nuclear [O iii] luminosity of log(L([O iii])/[ergs −1 ]) = 42.7 ± 0.15. We show that the ENLR sizes are least a factor of ∼2 larger than determined with the Hubble Space Telescope, but are consistent with those of recently reported type 2 QSOs at matching [O iii] luminosities. The ENLR of type 1 and type 2 QSOs therefore appear to follow the same size-luminosity relation. Furthermore, we show for the first time that the ENLR size is much better correlated with the QSO continuum luminosity than with the total/nuclear [O iii] luminosity. We show that ENLR luminosity and radio luminosity are correlated, and argue that radio jets even in radio-quiet QSOs are important for shaping the properties of the ENLR. Strikingly, the kinematics of the ionised gas is quiescent and likely gravitationally driven in the majority of cases and we find only 3 objects with radial gas velocities exceeding > 400 km s −1 in specific regions of the EELR that can be associate with radio jets. In general, these are significantly lower outflow velocities and detection rates compared to starburst galaxies or radio-loud QSOs. This represent a challenge for some theoretical feedback models in which luminous QSOs are expected to radiatively drive an outflow out to scales of the entire host galaxy.
Context. Galaxies, which often contain ionised gas, sometimes also exhibit a so-called low-ionisation nuclear emission line region (LINER). For 30 years, this was attributed to a central mass-accreting supermassive black hole (more commonly known as active galactic nucleus, AGN) of low luminosity, making LINER galaxies the largest AGN sub-population, which dominate in numbers over higher luminosity Seyfert galaxies and quasars. This, however, poses a serious problem. While the inferred energy balance is plausible, many LINERs clearly do not contain any other independent signatures of an AGN. Aims. Using integral field spectroscopic data from the CALIFA survey, we compare the observed radial surface brightness profiles with what is expected from illumination by an AGN. Methods. Essential for this analysis is a proper extraction of emission lines, especially weak lines, such as Balmer Hβ lines, which are superposed on an absorption trough. To accomplish this, we use the GANDALF code, which simultaneously fits the underlying stellar continuum and emission lines. Results. For 48 galaxies with LINER-like emission, we show that the radial emission-line surface brightness profiles are inconsistent with ionisation by a central point-source and hence cannot be due to an AGN alone. Conclusions. The most probable explanation for the excess LINER-like emission is ionisation by evolved stars during the short but very hot and energetic phase known as post-AGB. This leads us to an entirely new interpretation. Post-AGB stars are ubiquitous and their ionising effect should be potentially observable in every galaxy with the gas present and with stars older than ∼1 Gyr unless a stronger radiation field from young hot stars or an AGN outshines them. This means that galaxies with LINER-like emission are not a class defined by a property but rather by the absence of a property. It also explains why LINER emission is observed mostly in massive galaxies with old stars and little star formation.
We present the largest and most homogeneous catalog of H ii regions and associations compiled so far. The catalog comprises more than 7000 ionized regions, extracted from 306 galaxies observed by the CALIFA survey. We describe the procedures used to detect, select, and analyze the spectroscopic properties of these ionized regions. In the current study we focus on characterizing of the radial gradient of the oxygen abundance in the ionized gas, based on the study of the deprojected distribution of H ii regions. We found that all galaxies without clear evidence of an interaction present a common gradient in the oxygen abundance, with a characteristic slope of α O/H = −0.1 dex/r e between 0.3 and 2 disk effective radii (r e ), and a scatter compatible with random fluctuations around this value, when the gradient is normalized to the disk effective radius. The slope is independent of morphology, the incidence of bars, absolute magnitude, or mass. Only those galaxies with evidence of interactions and/or clear merging systems present a significantly shallower gradient, consistent with previous results. The majority of the 94 galaxies with H ii regions detected beyond two disk effective radii present a flattening in the oxygen abundance. The flattening is statistically significant. We cannot provide a conclusive answer regarding the origin of this flattening. However, our results indicate that its origin is most probably related to the secular evolution of galaxies. Finally, we find a drop/truncation of the oxygen abundance in the inner regions for 26 of the galaxies. All of them are non-interacting, mostly unbarred Sb/Sbc galaxies. This feature is associated with a central star-forming ring, which suggests that both features are produced by radial gas flows induced by resonance processes. Our result suggests that galaxy disks grow inside-out, with metal enrichment driven by the local star formation history and with a small variation galaxy-by-galaxy. At a certain galactocentric distance, the oxygen abundance seems to be correlated well with the stellar mass density and total stellar mass of the galaxies, independently of other properties of the galaxies. Other processes, such as radial mixing and inflows/outflows seem to have a limited effect on shaping of the radial distribution of oxygen abundances, although they are not ruled out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.