The genus Rhodobacter is taxonomically well studied, and some members are model organisms. However, this genus is comprised of a heterogeneous group of members. 16S rRNA gene-based phylogeny of the genus Rhodobacter indicates a motley assemblage of anoxygenic phototrophic bacteria (genus Rhodobacter) with interspersing members of other genera (chemotrophs) making the genus polyphyletic. Taxogenomics was performed to resolve the taxonomic conflicts of the genus Rhodobacter using twelve type strains. The phylogenomic analysis showed that Rhodobacter spp. can be grouped into four monophyletic clusters with interspersing chemotrophs. Genomic indices (ANI and dDDH) confirmed that all the current species are well defined, except Rhodobacter megalophilus. The average amino acid identity values between the monophyletic clusters of Rhodobacter members, as well as with the chemotrophic genera, are less than 80% whereas the percentage of conserved proteins values were below 70%, which has been observed among several genera related to Rhodobacter. The pan-genome analysis has shown that there are only 1239 core genes shared between the 12 species of the genus Rhodobacter. The polyphasic taxonomic analysis supports the phylogenomic and genomic studies in distinguishing the four Rhodobacter clusters. Each cluster is comprised of one to seven species according to the current Rhodobacter taxonomy. Therefore, to address this taxonomic discrepancy we propose to reclassify the members of the genus Rhodobacter into three new genera, Luteovulum gen. nov., Phaeovulum gen. nov. and Fuscovulum gen. nov., and provide an emended description of the genus Rhodobacter sensu stricto. Also, we propose reclassification of Rhodobacter megalophilus as a sub-species of Rhodobacter sphaeroides.
Our major concern was to address “yeast endobacteria” which was based on a few reports in the recent past where bacteria may find yeast as a niche for survival. In this study, we report the microbiota of twenty-nine axenic yeast cultures recovered from different habitats based on their 16S rRNA gene-amplicon metagenomes. Yeasts were identified based on D1/D2 or ITS gene sequences. Bacterial diversity was widespread, varied and rich among all yeasts except for four strains. Taxa belonging to the phylum Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes and the genera; Streptococcus, Propionibacterium were common to all the yeasts. Candida tropicalis was used as a model organism to confirm bacteria through fluorescence in situ hybridization (FISH), isolating and re-introducing the isolated bacteria into the yeast. FISH analysis confirmed the endobacteria of C. tropicalis and we have successfully isolated four bacteria only after lysis and disruption of yeast cells. These bacteria were identified as species of Pseudomonas, Chryseobacterium, Lysinibacillus and Propionibacterium. Guestimates indicate 95% of bacterial species of C. tropicalis are yet-to-be-cultivated. We have successfully reintroduced mCherry tagged Pseudomonas into C. tropicalis. Also, auto-fluorescent Prochlorococcus and Rhodopseudomonas could be introduced into C. tropicalis while mCherry tagged E. coli or Salmonella could not be introduced. FISH analysis confirmed the presence of both native and infected bacterial cells present in C. tropicalis. Our findings unveil the insights into the ghost microbiota associated with yeast, which otherwise are considered to be axenic cultures. Their inherent occurrence, together with co-cultivation experiments under laboratory conditions suggests that yeasts are a thriving hub for bacterial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.