We investigated electronic structure of 5d transition-metal oxide Sr 2 IrO 4 using angle-resolved photoemission, optical conductivity, and x-ray absorption measurements and first-principles band calculations. The system was found to be well described by novel effective total angular momentum J eff states, in which relativistic spin-orbit (SO) coupling is fully taken into account under a large crystal field. Despite of delocalized Ir 5d states, the J eff -states form so narrow bands that even a small correlation energy leads to the J eff = 1/2 Mott ground state with unique electronic and magnetic behaviors, suggesting a new class of the J eff quantum spin driven correlated-electron phenomena.
The K2K experiment observes indications of neutrino oscillation: a reduction of nu(mu) flux together with a distortion of the energy spectrum. Fifty-six beam neutrino events are observed in Super-Kamiokande (SK), 250 km from the neutrino production point, with an expectation of 80.1(+6.2)(-5.4). Twenty-nine one ring mu-like events are used to reconstruct the neutrino energy spectrum, which is better matched to the expected spectrum with neutrino oscillation than without. The probability that the observed flux at SK is explained by statistical fluctuation without neutrino oscillation is less than 1%.
We investigated electronic structure of hexagonal multiferroic YMnO3 using the polarization dependent x-ray absorption spectroscopy (XAS) at O K and Mn L(2,3) edges. The spectra exhibit strong polarization dependence at both edges, reflecting anisotropic Mn 3d orbital occupation. Moreover, the O K edge spectra show that Y 4d states are strongly hybridized with O 2p ones, resulting in large anomalies in Born effective charges on off-centering Y and O ions. These results manifest that the Y d(0)-ness with rehybridization is the driving force for the ferroelectricity, and suggest a new approach to understand the multiferroicity in the hexagonal manganites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.