This paper presents a conceptual design of a tail-cone thruster system which is operating under an axisymmetric inlet distortion. An effort to realize the targeted fuel burn saving that was proposed in NASA’s STARC_ABL aircraft design is made through a CFD based design approach. This method employs three iterative steps to exploit the CFD tools until the design requirements are met: a quasi-2D through-flow model to design the fan/EGV, a 3-D RANS simulation of the single blade row to account for the inlet/fan and the EGV/nozzle interaction, and a 3-D RANS simulation of the airframe with a propulsor installed – propulsion airframe integration (PAI). The design requirements which include the thrust, and shaft power of the propulsor are matched throughout the evaluations coming from two CFD domains, i.e., the turbo-machinery and the PAI. During the switch between these different computational domains, the inlet and exit profiles are matched via the correction factors of the body-force model. The present tail-cone thruster (TCT) aerodynamic design leverages a low-pressure ratio fan (FPR = 1.2∼1.25) of which the camber-line angles are predicted by a quasi-2D through-flow model. The quasi-2D model is derived to analyze the radially distorted flow resulting from the ingested boundary layer at the inlet. It also estimates the appropriate velocity vectors of the metal angles of the fan and EGV which is subjected to different types of vortex at the fan exit. The baseline geometry is revisited and its internal flow-path and exhaust cone are redesigned to illustrate the strong correlation among the components of the propulsor in the PAI domain. The peak efficiency point of the fan/EGV with respect to the blade counts, a.k.a. solidity, and rotational speed is chosen for the cruise condition via parametric studies. The corresponding performance maps are presented. The resulting performance metrics of the new conceptual design of the BLI propulsor are analyzed and compared with these of the baseline in the PAI aspect. Finally, ideas of the CFD based design of a BLI propulsor are discussed based on the observations drawn from the numerical results.
The benefit of the boundary layer ingestion (BLI) is described in the perspective of the propulsion and engine development. A power saving map of the BLI engines is derived based on the correlation of the wake velocity ratio of the ingested boundary layer profile and the propulsive efficiency. The ratio of the mass flow rate between BLI and non-BLI propulsors is introduced to quantify the power saving of the BLI engine relative to a clean inlet flow engine which generates same amount of thrust. The wake recovery factor from the jet flow out of the BLI engine is employed to find an adequate sizing of the BLI engine for the given design requirement. The effects of the fan pressure ratio on the power saving are also investigated to explore the feasible range of the BLI engine design. The derived correlation is validated with CFD analyses. A numerical experiment is carried out by varying the wake velocity ratio through different BLI engines sized with respect to an influencing body. Consequently, the propulsor efficiency is quantified and presented by the saving in the actual shaft power. The efficiency penalty, pressure ratio of the BLI fan stage are correlated with the power saving and the correlation is validated through BLI2DTF and R4 fan stage CFD analyses based on rig test data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.