The Gulf Stream is an ocean current that modulates climate in the Northern Hemisphere by transporting warm waters from the Gulf of Mexico into the North Atlantic and Arctic oceans. A changing Gulf Stream has the potential to thaw and convert hundreds of gigatonnes of frozen methane hydrate trapped below the sea floor into methane gas, increasing the risk of slope failure and methane release. How the Gulf Stream changes with time and what effect these changes have on methane hydrate stability is unclear. Here, using seismic data combined with thermal models, we show that recent changes in intermediate-depth ocean temperature associated with the Gulf Stream are rapidly destabilizing methane hydrate along a broad swathe of the North American margin. The area of active hydrate destabilization covers at least 10,000 square kilometres of the United States eastern margin, and occurs in a region prone to kilometre-scale slope failures. Previous hypothetical studies postulated that an increase of five degrees Celsius in intermediate-depth ocean temperatures could release enough methane to explain extreme global warming events like the Palaeocene-Eocene thermal maximum (PETM) and trigger widespread ocean acidification. Our analysis suggests that changes in Gulf Stream flow or temperature within the past 5,000 years or so are warming the western North Atlantic margin by up to eight degrees Celsius and are now triggering the destabilization of 2.5 gigatonnes of methane hydrate (about 0.2 per cent of that required to cause the PETM). This destabilization extends along hundreds of kilometres of the margin and may continue for centuries. It is unlikely that the western North Atlantic margin is the only area experiencing changing ocean currents; our estimate of 2.5 gigatonnes of destabilizing methane hydrate may therefore represent only a fraction of the methane hydrate currently destabilizing globally. The transport from ocean to atmosphere of any methane released--and thus its impact on climate--remains uncertain.
Seafloor properties, including total organic carbon (TOC), are sparsely measured on a global scale, and interpolation (prediction) techniques are often used as a proxy for observation. Previous geospatial interpolations of seafloor TOC exhibit gaps where little to no observed data exists. In contrast, recent machine learning techniques, relying on geophysical and geochemical properties (e.g., seafloor biomass, porosity, and distance from coast), show promise in making comprehensive, statistically optimal predictions. Here we apply a nonparametric (i.e., data‐driven) machine learning algorithm, specifically k‐nearest neighbors (kNN), to estimate the global distribution of seafloor TOC. Our results include predictor (feature) selection specifically designed to mitigate bias and produce a statistically optimal estimation of seafloor TOC, with uncertainty, at 5 × 5‐arc minute resolution. Analysis of parameter space sample density provides a guide for future sampling. One use for this prediction is to constrain a global inventory, indicating that just the upper 5 cm of the seafloor contains about 87 ± 43 gigatons of carbon (Gt C) in organic form.
The most climate-sensitive methane hydrate deposits occur on upper continental slopes at depths close to the minimum pressure and maximum temperature for gas hydrate stability. At these water depths, small perturbations in intermediate ocean water temperatures can lead to gas hydrate dissociation. The Arctic Ocean has experienced more dramatic warming than lower latitudes, but observational data have not been used to study the interplay between upper slope gas hydrates and warming ocean waters. Here we use (a) legacy seismic data that constrain upper slope gas hydrate distributions on the U.S. Beaufort Sea margin, (b) Alaskan North Slope borehole data and offshore thermal gradients determined from gas hydrate stability zone thickness to infer regional heat flow, and (c) 1088 direct measurements to characterize multidecadal intermediate ocean warming in the U.S. Beaufort Sea. Combining these data with a three-dimensional thermal model shows that the observed gas hydrate stability zone is too deep by 100 to 250 m. The disparity can be partially attributed to several processes, but the most important is the reequilibration (thinning) of gas hydrates in response to significant (~0.5°C at 2σ certainty) warming of intermediate ocean temperatures over 39 years in a depth range that brackets the upper slope extent of the gas hydrate stability zone. Even in the absence of additional ocean warming, 0.44 to 2.2 Gt of methane could be released from reequilibrating gas hydrates into the sediments underlying an area of~5-7.5 × 10 3 km 2 on the U.S. Beaufort Sea upper slope during the next century.
A series of large blocks from the 44-North Slide, offshore Oregon, impacted the seafloor with sufficient force to induce a broad zone of deformation. In 2017, we acquired a seismic profile from the headwall area to the outer toe of this slide. Previous work identified this slide, but it has not been imaged at high resolution before this survey. A striking surficial feature is a collection of blocks that lie downslope from an amphitheater-shaped headwall. The blocks traveled up to 20-km horizontally and about 1200-m vertically down a 13° slope and now cover an area of ~100 km2. The blocks have rough and angular edges that extend up to 400-m above the surrounding seafloor. Seaward of the blocks, a 10-km zone of sediment is deformed, horizontally shortened by 8%. We interpret the strain field to be a result of the dynamic impact forces of the slide. This suggests a high-mobility failure with tsunamigenic potential. It is unclear what preconditioned and triggered this event, however, earthquake-induced failure is one possibility. Gas hydrate dissociation may have also played a role due to the presence of a bottom-simulating reflector beneath the source area. This study underscores the need to understand the dynamic processes of submarine landslides to more accurately estimate their societal impacts.
Understanding the thermal structure of the Cascadia subduction zone is important for understanding megathrust earthquake processes and seismogenic potential. Currently our understanding of the thermal structure of Cascadia is limited by a lack of high spatial resolution heat flow data and by poor understanding of thermal processes such as hydrothermal fluid circulation in the subducting basement, sediment thickening and dewatering, and frictional heat generation on the plate boundary. Here, using a data set of publically available seismic lines combined with new interpretations of bottom simulating reflector (BSR) distributions, we derive heat flow estimates across the Cascadia margin. Thermal models that account for hydrothermal circulation predict BSR‐derived heat flow bounds better than purely conductive models, but still over‐predict surface heat flows. We show that when the thermal effects of in‐situ sedimentation and of sediment thickening and dewatering due to accretion are included, models with hydrothermal circulation become consistent with our BSR‐derived heat flow bounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.