This study reports the mid-term results of a large-bearing hybrid metal-on-metal total hip replacement in 199 hips (185 patients) with a mean follow-up of 62 months (32 to 83). Two patients died of unrelated causes and 13 were lost to follow-up. In all, 17 hips (8.5%) have undergone revision, and a further 14 are awaiting surgery. All revisions were symptomatic. Of the revision cases, 14 hips showed evidence of adverse reactions to metal debris. The patients revised or awaiting revision had significantly higher whole blood cobalt ion levels (p = 0.001), but no significant difference in acetabular component size or position compared with the unrevised patients. Wear analysis (n = 5) showed increased wear at the trunnion-head interface, normal levels of wear at the articulating surfaces and evidence of corrosion on the surface of the stem. The cumulative survival rate, with revision for any reason, was 92.4% (95% confidence interval 87.4 to 95.4) at five years. Including those awaiting surgery, the revision rate would be 15.1% with a cumulative survival at five years of 89.6% (95% confidence interval 83.9 to 93.4). This hybrid metal-on-metal total hip replacement series has shown an unacceptably high rate of failure, with evidence of high wear at the trunnion-head interface and passive corrosion of the stem surface. This raises concerns about the use of large heads on conventional 12/14 tapers.
The aim of this study was to assess the effect of frictional torque and bending moment on fretting corrosion at the taper interface of a modular femoral component and to investigate whether different combinations of material also had an effect. The combinations we examined were 1) cobalt-chromium (CoCr) heads on CoCr stems 2) CoCr heads on titanium alloy (Ti) stems and 3) ceramic heads on CoCr stems. In test 1 increasing torque was imposed by offsetting the stem in the anteroposterior plane in increments of 0 mm, 4 mm, 6 mm and 8 mm when the torque generated was equivalent to 0 Nm, 9 Nm, 14 Nm and 18 Nm. In test 2 we investigated the effect of increasing the bending moment by offsetting the application of axial load from the midline in the mediolateral plane. Increments of offset equivalent to head + 0 mm, head + 7 mm and head + 14 mm were used. Significantly higher currents and amplitudes were seen with increasing torque for all combinations of material. However, Ti stems showed the highest corrosion currents. Increased bending moments associated with using larger offset heads produced more corrosion: Ti stems generally performed worse than CoCr stems. Using ceramic heads did not prevent corrosion, but reduced it significantly in all loading configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.