Automatic c ontrol of industrial flotation cells and circuits presents a set of significant challenges due to the number of variables, the sensitivity of flotation cells to variation in these variables and the complexity of predicting flotation performance and/ or deve loping a strategy for optim isation. Air recovery, a measure of froth stability, has been shown to pass through a peak as flotation cell aeration increases. Furthermore, the air rate at which the Peak Air Recovery (PAR) is obtained results in optimal flot ation performance, whether improved concentrate grade, recovery or both grade and recovery. Peak air recovery, therefore, presents a clear optimising control strategy for the operat ion of flotation cells which is generic to all flotation cells regardless of position in the flotation circuit. In this study, a novel control system based on PAR is developed and demonstrated using a large continuous laboratory flotation cell. In this study, a direct search optimisation algorithm based on the GSS (generating s et search) methodology was developed using a 70 l continuous flotation cell operating with a two - phase system (surfactant solution and air only). Characterisation of the laboratory system showed that it was stable for up to 6 hours and exhibited a reprodu cible peak in air recovery. A dynamic model of the response of the system with regards to changes in air recovery was developed that allowed simulations of the proposed optimising control system to be carried out. The optimisation algorithm was then applied to the experimental system. The tr ialled GSS algorithm was shown to find the PAR air rate when starting above, below and at the PAR air rate, and additionally with a disturbance introduced into the system. While the direct search approach can be slow, it is simple and robust. This demons trates an innovative approach to optimising control for froth flotation and is the first application of froth stability maximisation for flotation control
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.