Cloud infrastructural resource optimization is the process of precisely selecting the allocating the correct resources either to a workload or application. When workload execution, accuracy, and cost are accurately stabilized in opposition to the best possible framework in real-time, efficiency is attained. In addition, every workload or application required for the framework is characteristic and these essentials change over time. But, the existing method was failed to ensure the high Quality of Service (QoS). In order to address this issue, a Tricube Weighted Linear Regression-based Inter Quartile (TWLR-IQ) for Cloud Infrastructural Resource Optimization is introduced. A Tricube Weighted Linear Regression is presented in the proposed method to estimate the resources (i.e., CPU, RAM, and network bandwidth utilization) based on the usage history in each cloud server. Then, Inter Quartile Range is applied to efficiently predict the overload hosts for ensuring a smooth migration. Experimental results show that our proposed method is better than the approach in Cloudsim under various performance metrics. The results clearly showed that the proposed method can reduce the energy consumption and provide a high level of commitment with ensuring the minimum number of Virtual Machine (VM) Migrations as compared to the state-of-the-art methods.
Cloud Computing (CC) environment has restructured the Information Age by empowering on demand dispensing of resources on a pay-per-use base. Resource Scheduling and allocation is an approach of ascertaining schedule on which tasks should be carried out. Owing to the heterogeneity nature of resources, scheduling of resources in CC environment is considered as an intricate task. Allocating best resource for a cloud request remains a complicated task and the issue of identifying the best resource – task pair according to user requirements is considered as an optimization issue. Therefore the main objective of the Cloud Server remains in scheduling the tasks and allocating the resources in an optimal manner. In this work an optimized task scheduled resource allocation model is designed to effectively address large numbers of task request arriving from cloud users, while maintaining enhanced Quality of Service (QoS). The cloud user task requests are mapped in an optimal manner to cloud resources. The optimization process is carried out using the proposed Multi-objective Auto-encoder Deep Neural Network-based (MA-DNN) method which is a combination of Sen’s Multi-objective functions and Auto-encoder Deep Neural Network model. First tasks scheduling is performed by applying Hypervolume-based Sen’s Multi-objective programming model. With this, multi-objective optimization (i.e., optimization of cost and time during the scheduling of tasks) is performed by means of Hypervolume-based Sen’s Multi-objective programming. Second, Auto-encoder Deep Neural Network-based Resource allocation is performed with the scheduled tasks that in turn allocate the resources by utilizing Jensen–Shannon divergence function. The Jensen–Shannon divergence function has the advantage of minimizing the energy consumption that only with higher divergence results, mapping is performed, therefore improving the energy consumption to a greater extent. Finally, mapping tasks with the corresponding resources using Kronecker Delta function improves the makespan significantly. To show the efficiency of Multi-objective Auto-encoder Deep Neural Network-based (MA-DNN) cloud time scheduling and optimization between tasks and resources in the CC environment, we also perform thorough experiments on the basis of realistic traces derived from Personal Cloud Datasets. The experimental results show that compared with RAA-PI-NSGAII and DRL, MA-DNN not only significantly accelerates the task scheduling efficiency, task scheduling time but also reduces the energy usage and makespan considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.