Suites of wireline well logs and three-dimensional (3D) seismic data were integrated to characterise the reservoir and estimate the hydrocarbon in Otigwe field, coastal swamp depositional belt, Niger Delta. The 3D seismic data were used to generate seismic sections through which fourteen faults and two horizons of interest were mapped across four wells. Depth structural map generated from the mapped faults and horizons of interest shows that the trapping mechanism within the field is fault-supported anticlinal structural trap. The four available wells were correlated using lithostratigraphic correlation to establish two reservoir continuities (Reservoir A and B). The estimated reservoir fluid volume at surface condition using reservoir simulation and modelling software is 59 MMstb for reservoir A and 25.70 MMstb for reservoir B. On the other hand, the estimated reservoir fluid volume at surface condition using analytical method is 52.58 MMstb for reservoir A and 18.85 MMstb for reservoir B. Using reservoir simulation and modelling software, the average net-to-gross ratio and shale volume for reservoir A range from 0.86 to 0.89 and 0.11 to 0.14, respectively, while for reservoir B the range is between 0.69 to 0.82 and 0.18 to 0.31, respectively. On the flipside using the analytical method, the average net-to-gross ratio and shale volume for reservoir A is 0.78 and 0.22, respectively. The results from the volumetric estimation of reservoir fluids showed close values using both methods and reservoir A is more prolific compare to B.
The sediment of #3 Well of the Greater Ughelli Depobelt are represented by sand and shale intercalation. In this study, lithofacies analysis and X-ray diffraction technique were used to characterize the sediments from the well. The lithofacies analysis was based on the physical properties of the sediments encountered from the ditch cuttings. Five lithofacies types of mainly sandstone, clayey sandstone, shaly sandstone, sandy shale and shale and 53 lithofacies zones were identified from 15 ft to 11295 ft. The result of the X-ray diffraction analysis identified that the following clay minerals – kaolinite, illite/muscovite, sepiolite, chlorite, calcite, dolomite; with kaolinite in greater percentage. The non-clay minerals include quartz, pyrite, anatase, gypsum, plagioclase, microcline, jarosite, barite and fluorite; with quartz having the highest percentage. Therefore, due to the high percentage of kaolinite in #3 well, the pore filing kaolinite may have more effect on the reservoir quality than illite/muscovite, chlorite and sepiolite. By considering the physical properties, homogenous and heterogeneous nature of the #3 Well, it would be concluded that #3 Well has some prospect for petroleum and gas exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.