Abstract:In this paper, authors investigate homogeneous-heterogeneous chemical reaction and heat absorption effects on a two-dimensional steady hydromagnetic Newtonian nanoliquid flow along a continuously stretching sheet. The flow field is subjected to a uniform magnetic field acting in a direction perpendicular to the direction of nanoliquid flow. A mathematical model of the physical problem is presented involving nonlinear partial differential equations with appropriate boundary conditions. These equations are then transformed into nonlinear ordinary differential equations using a suitable similarity transformation. Finally, approximate solutions of the transformed equations are obtained using the spectral quasi-linearization method. Results of fluid velocity, fluid temperature, and species concentration are depicted graphically, while the values of skin friction and Nusselt number are presented in tabular form. Fluid flow models of this kind find applications in catalytic reactors involving chemical reactions, insulation systems, and in heat exchangers. The applied magnetic field has a retarding influence on the nanofluid velocity and species concentration, while it does not have any significant effect on the nanofluid temperature. The homogeneous and heterogeneous reactions tend to decrease the species concentration.
Two dimensional steady hydromagnetic boundary layer flow of a viscous, incompressible, and electrically conducting nanofluid past a stretching sheet with Newtonian heating, in the presence of viscous and Joule dissipations is studied. The transport equations include the combined effects of Brownian motion and thermophoresis. The governing nonlinear partial differential equations are transformed to a set of nonlinear ordinary differential equations which are then solved using Spectral Relaxation Method (SRM) and the results are validated by comparison with numerical approximations obtained using the Matlab in-built boundary value problem solver bvp4c, and with existing results available in literature. Numerical values of fluid velocity, fluid temperature and species concentration are displayed graphically versus boundary layer coordinate for various values of pertinent flow parameters whereas those of skin friction, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Such nanofluid flows are useful in many applications in heat transfer, including microelectronics, fuel cells, pharmaceutical processes, and hybrid-powered engines, engine cooling/vehicle thermal management, domestic refrigerator, chiller, heat exchanger, in grinding, machining and in boiler flue gas temperature reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.