Band 3 is the most abundant integral protein of the red blood cell membrane. It performs two critical biological functions: maintaining ionic homeostasis, by transporting Cl- and HCO3-ions, and providing mechanical stability to the erythroid membrane. Erythroid band 3 (AE1) is one of three anion exchangers that are encoded by separate genes. The AE1 gene is transcribed by two promoters: the upstream promoter produces erythroid band 3, whereas the downstream promoter initiates transcription of the band 3 isoform in kidney. To assess the biological consequences of band 3 deficiency, we have selectively inactivated erythroid but not kidney band 3 by gene targeting in mice. Although no death in utero occurred, the majority of homozygous mice die within two weeks after birth. The erythroid band 3 null mice show retarded growth, spherocytic red blood cell morphology and severe haemolytic anaemia. Remarkably, the band 3-/- red blood cells assembled normal membrane skeleton thus challenging the notion that the presence of band 3 is required for the stable biogenesis of membrane skeleton. The availability of band 3-/- mice offers a unique opportunity to investigate the role of erythroid band 3 in the regulation of membrane-skeletal interactions, anion transport and the invasion and growth of malaria parasite into red blood cells.
A mutant Escherichia coli (Ppcc') which was unable to grow on glucose as a sole carbon source was isolated. This mutant had very low levels of phosphoenolpyruvate carboxylase activity (approximately 5% of the wild type). Goat immunoglobulin G prepared against wild-type phosphoenolypyruvate carboxylase cross-reacted with the Ppccenzyme. The amount of enzyme protein in the mutant cells was similar to that found in wild-type cells, but it had greatly diminished specific activity. The catalytically less active mutant enzyme retained the ability to interact with fructose 1,6-bisphosphate, but did not exhibit stabilization of the tetrameric form by aspartate. The pl of the mutant protein was lower (4.9) than that of the wild-type protein (5.1). After electrophoresis and immunoblotting of the partially purified protein, several immunostaining bands were seen in addition to the main enzyme band. A novel method for showing that these bands represented proteolytic fragments of phosphoenolpyruvate carboxylase was developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.