A quasistatic simulation of highly nonlinear problems under fault movements was carried out using the EXPLICIT module of ABAQUS. Combined with the secondary development program of the software, the application of the strain softening Mohr–Coulomb model in the simulation was realized. Free field-fault systems were simulated with two types of fault types (normal and reverse faults), four fault dip angles (45°, 60°, 75°, and 90°), and two kinds of soil (sand and clay). Moreover, the rupture laws and sensitivities of the sand and clay were studied with different soil thicknesses and different fault dip angles in the free field. The results show that the width of the ground zone with obvious deformation, which represents the point of the fault outcrop, the critical displacement of the fault, and the rupture characteristics of the overlying soil are closely related to the fault type and soil parameters. The critical displacement of the reverse fault is larger than that of the normal fault. The width of the ground zone with obvious deformation varies from 0.65 to 1.3 and does not exhibit a regular relationship with the type of soil. Compared with a normal fault, the rupture of a reverse fault is not prone to exposure at the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.