This work presents the buckling investigation of embedded orthotropic nanoplates by using a new hyperbolic plate theory and nonlocal small-scale effects. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modeled with only three unknowns and three governing equation as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal differential constitutive relations of Eringen is employed to investigate effects of small scale on buckling of the rectangular nanoplate. The elastic foundation is modeled as two-parameter Pasternak foundation. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns. Keywords: Buckling; orthotropic nanoplates; a simple 3-unknown theory; nonlocal elasticity theory; Pasternak’s foundations. * Corresponding author; Email-tou_abdel@yahoo.com
Room-temperature electroluminescence (EL) has been measured at both macroscopic and microscopic levels from metal-oxide-semiconductor devices containing silicon nanocrystals (Si-nc) embedded in silicon dioxide (SiO(2)) obtained by high-temperature annealing (1050 and 1100 °C) after Si(+) ion implantation. It is found that spatially integrated (macroscopic) EL is dominated by a near-infrared band centered where the photoluminescence (PL) band of Si-nc (from 700 to 1000 nm) is located. However, on a microscopic scale, EL emission is inhomogeneous, the sample surface exhibiting many visible spots of micron-order diameter. EL spectra from a microscopic surface of ∼1 µm(2)(μEL) on visible spots have revealed dominant contributions between ∼550 and ∼650 nm, attributed to oxide defects. These spectral features rapidly decrease with distance from a bright spot, while lower-intensity near-infrared contributions (750-950 nm) remain unaffected up to relatively large distances before eventually becoming extinct. The macroscopic EL measurements can be explained as a superposition of the μEL and PL spectra. A luminescent mechanism is proposed in which charge carriers mostly tunnel through high-defect-density channels in the oxide, yielding bright visible spots, while Si-nc in these channels and their surroundings contribute to the luminescence by hosting electron-hole recombinations (EL) and/or exhibiting PL due to optical excitation from the nearby visible EL spot.
The first reports that nanostructured silicon emits radiation in the visible wavelength date back twenty years. This observation is interesting from a fundamental point of view and is potentially important for device engineering, as it points to the opportunity of combining microelectronics and optoelectronics on the same silicon chip. This combination is becoming increasingly attractive due to the intrinsic limitations that are being met by the microelectronics industry in its attempt to progressively reduce device features. In this review, we describe and compare the structure and properties of group IV nanocrystals (mostly silicon, with some references to germanium) grown by ion implantation and reactive pulsed laser deposition. Particular emphasis is placed on structural and spectroscopic characterization, as well as size-dependent optical properties. The origin of the luminescence signal and the role of defects and interfaces are discussed in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.