We build an accurate data base of 5200 HCN and HNC rotation–vibration energy levels, determined from existing laboratory data. 20 000 energy levels in the Harris et al. linelist are assigned approximate quantum numbers. These assignments, lab‐determined energy levels and Harris et al. energy levels are incorporated in to a new energy level list. A new linelist is presented, in which frequencies are computed using the lab‐determined energy levels where available, and the ab initio energy levels otherwise. The new linelist is then used to compute new model atmospheres and synthetic spectra for the carbon star WZ Cas. This results in better fit to the spectrum of WZ Cas in which the absorption feature at 3.56 μm is reproduced to a higher degree of accuracy than has previously been possible. We improve the reproduction of HCN absorption features by reducing the abundance of Si to [Si/H]=−0.5 dex, however, the strengths of the Δv= 2 CS band heads are overpredicted.
Context. Large spectroscopic surveys have discovered very peculiar and hitherto unknown types of active galactic nuclei (AGN). Such rare objects may hold clues to the accretion history of the supermassive black holes at the centres of galaxies. Aims. We aim to create a sizeable sample of unusual quasars from the unprecedented spectroscopic database of the Sloan Digital Sky Survey (SDSS). Methods. We exploit the spectral archive of the SDSS Data Release 7 to select unusual quasar spectra. The selection method is based on a combination of the power of self-organising maps and the visual inspection of a huge number of spectra. Self-organising maps were applied to nearly 10 5 spectra classified as quasars at redshifts from z = 0.6 to 4.3 by the SDSS pipeline. Particular attention was paid to minimise possible contamination by rare peculiar stellar spectral types. All selected quasar spectra were individually studied to determine the object type and the redshift.Results. We present a catalogue of 1005 quasars with unusual spectra. These spectra are dominated by either broad absorption lines (BALs; 42%), unusual red continua (27%), weak emission lines (18%), or conspicuously strong optical and/or UV iron emission (11%). This large sample provides a useful resource for both studying properties and relations of/between different types of unusual quasars and selecting particularly interesting objects, even though the compilation is not aimed at completeness in a quantifiable sense. The spectra are grouped into six types for which composite spectra are constructed and mean properties are computed. Remarkably, all these types turn out to be on average more luminous than comparison samples of normal quasars after a statistical correction is made for intrinsic reddening (E(B − V) ≈ 0 to 0.4 for SMC-like extinction). Both the unusual BAL quasars and the strong iron emitters have significantly lower radio luminosities than normal quasars. We also confirm that strong BALs avoid the most radioluminous quasars. For 32 particularly interesting objects, individual spectra are presented. Among these objects are quasars with many narrow BAL troughs and one quasar where the continuum is strongly suppressed by overlapping BAL troughs across nearly the whole SDSS spectrum. Finally, we create a sample of quasars similar to the two "mysterious" objects discovered by Hall et al. (2002, ApJS, 141, 267) and briefly discuss the quasar properties and possible explanations of their highly peculiar spectra.
???The definitive version is available at www.blackwell-synergy.com???. Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13642.
Aims. We report results of a quantitative colorimetric UBVRI analysis of two flare events on the red dwarf EV Lac. The photometric data were obtained in September 2004, during the multi-site synchronous monitoring from the four observatories in Ukraine, Russia, Greece, and Bulgaria. These observations confirmed the presence of small-scale high-frequency oscillations (HFO) initially detected by Rodonó (1974, A&A, 32, 337) and recently reconfirmed by the authors. Here we discuss the color characteristics of flares and HFO. Methods. Colorimetric analysis had been performed with the help of the time tracks in the UBVRI color-color diagrams from the earliest phase of flare development. Digital filtering technique was used to evaluate the time-dependent color indices. Results. As can be clearly seen in the diagrams, color indices oscillate on a time scale of seconds, far exceeding instrumental errors. Regarding the HFO, we conclude that the bulk of a flare oscillates during a major part of its lifetime between the states of hydrogen plasma opaque and transparent in the Balmer continuum. We find that at the peaks of oscillations the color tracks drift into the regions of color-color diagrams corresponding to a blackbody radiation, which provides an estimate of color temperatures from 17 000 to 22 000 K. We also find that flares cover ∼1% of the stellar disc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.