In this paper, a novel active compliant joint for robotic and microdisplacement applications is investigated numerically and experimentally. The proposed actuator structure is simple and possesses a higher energy density compared to the available actuators. Experimental tests are performed employing the shape memory behavior of NiTi alloy by the electric current as a heating source. To verify the actuator performance, numerical models are simulated in a nonlinear finite element program through employing a user subroutine according to experimental tests. Finite element implementation of the proposed actuator is performed based on the constitutive equations developed in Boyd–Lagoudas phenomenological model. Comparing the test and numerical results revealed that the numerical model is successful in predicting the actuator response. Finally, based on the verified numerical model, the effects of different parameters, e.g. the compression spring stiffness on the actuator performance are studied, and an optimal design for the actuator structure is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.