In the real world it is a routine that one must deal with uncertainty when security is concerned. Intrusion detection systems offer a new challenge in handling uncertainty due to imprecise knowledge in classifying the normal or abnormal behaviour patterns. In this paper we have introduced an emerging approach for intrusion detection system using Neutrosophic Logic Classifier which is an extension/combination of the fuzzy logic, intuitionistic logic, paraconsistent logic, and the three-valued logics that use an indeterminate value. It is capable of handling fuzzy, vague, incomplete and inconsistent information under one framework. Using this new approach there is an increase in detection rate and the significant decrease in false alarm rate. The proposed method tripartitions the dataset into normal, abnormal and indeterministic based on the degree of membership of truthness, degree of membership of indeterminacy and degree of membership of falsity. The proposed method was tested up on KDD Cup 99 dataset. The Neutrosophic Logic Classifier generates the Neutrosophic rules to determine the intrusion in progress. Improvised genetic algorithm is adopted in order to detect the potential rules for performing better classification. This paper exhibits the efficiency of handling uncertainty in Intrusion detection precisely using Neutrosophic Logic Classifier based Intrusion detection System.
A three layer feed forward artificial neural network (ANN) with back propagation training algorithm was developed to model the adsorption process of Cr(vi) in aqueous solution using riverbed sand containing quartz/feldspar/wollastonite (QFW) as adsorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.