Gibbs free energies of formation for gas, subcooled liquid, and aqueous solution phases were estimated for all 209 polychlorinated biphenyl (PCB) congeners at 298.15 K and 100 000 Pa. A literature search was conducted to locate experimental data or predicted data for PCBs. Where other data were not available, the standard-state enthalpies of formation of the gas and absolute standard-state entropies of the gas were estimated using the NIST Structures and Properties Database and Estimation Program based on Benson's group additivity method.Resultant Gibbs free energies of formation in aqueous solution, as well as all intermediate quantities used in their calculation, are tabulated. Implications of the data relative to dechlorination are briefly discussed.
Abstract-Gibbs free energies of formation for the ideal gas, liquid phase, and species in solution were estimated for 75 polychlorinated dibenzo-p-dioxins (PCDDs) at 298.15 K and 100,000 Pa. These values were used to calculate standard redox potentials, with H 2 as the electron donor. Owing to the lack of experimental thermodynamic data for the involved chemical species, the standard-state ideal gas enthalpies of formation were evaluated by several semiempirical methods including the Modified Neglect of Diatomic Differential Overlap (MNDO), Austin Model 1 (AM1), and MNDO-Parametric Method 3 (PM3). Three different implementations of Benson's group additivity method for estimation of ideal gas enthalpies of formation were also evaluated. As a result of the evaluation, the CHETAH program based on Benson's group additive method was chosen for ideal gas enthalpy of formation calculations. Entropies, vapor pressure, and aqueous solubility were calculated by existing methods in order to complete the thermodynamic cycle. Calculated redox potentials indicate that chlorodioxins, including 2,3,7,8-tetrachlorodioxin, can serve as electron acceptors in anaerobic environments, at least from a thermodynamic perspective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.