In Diesel engines, where fuel is pumped into highly compressed air towards the end of the compression cycle, knocking is more or less unavoidable. By this time there is already a quantity of fuel in the combustion chamber which will first burn in areas of higher oxygen density before the full charge is combusted. The sudden rise in pressure and temperature produces the distinctive 'knock' or 'clatter' diesel, some of which must be allowed in engine design. The aim of knock control strategies is to try to maximize the trade-off between protecting the engine from damaging knock incidents, and optimizing the output torque of the engine. Knock events are a random process and independent. Knock controllers can't be programmed in a deterministic model. Due to the random nature of arriving knock events, a single time history simulation or experiment of knock control methods cannot provide a repeatable measurement of the controller efficiency. The desired trade-off must therefore be achieved in a stochastic context that could provide an appropriate environment for designing and evaluating the output of various knock control strategies with rigorous statistical properties. Clutching characteristics of a dual fuel diesel engine with direct injection of diesel and a liquid petroleum product in dual fuel mode. The engine is tested for knock reduction by adding Diethyl ether in to the diesel along with Liquid petroleum product. Variation of knocking was plotted with respect to different parameters and the result booted as knocking is minimized by the addition of diethyl ether.
Thermal conductivity is considered important factor for rapid cooling and heating application. Base heat transfer fluid normally having low thermal conductivity, so we goes to Nano fluid for increases the heat transfer rate. Nano fluid is nanometre sized particle such as metal, oxide, and carbide etc., dispersed into base heat transfer fluid. In this paper shows varying factor affecting the thermal conductivity of Nano fluid at different conditions. All researcher tried to increase the heat transfer rate by considering thermal conductivity Nano fluid. Thermal conductivity is increased with increasing concentration of metal particle within critical limit. Thermal conductivity is affected by the following parameters like shape, size, clustering, collision, porous layer, melting point of nanoparticle etc., controlling this type of parameters to increase the thermal conductivity of Nano fluid. Nano fluid is advanced heat transfer fluid for next generation.
Abstract:Alternative fuels have been getting more attention as concerns escalate over exhaust pollutant emissions produced by internal combustion engines, higher fuel costs, and the depletion of crude oil. Various solutions have been proposed, including utilizing alternative fuels as a dedicated fuel in spark ignited engines, diesel pilot ignition engines, gas turbines, and dual fuel and bi-fuel engines. Among these applications, one of the most promising options is the diesel derivative dual fuel engine with natural gas as the supplement fuel. This study aims to evaluate diesel and dual fuel combustion in a di ethyl eaterdiesel dual fuel engine. More dual fuel engines are being utilized due to stricter emission standards, increasing costs of diesel fuel and decreasing costs of di ethyl eater. Originally sold as diesel engines, these units are converted to di ethyl eater-diesel fuel engines using an aftermarket dual fuel kit. As di ethyl eater is mixed with diesel, the amount of diesel used is reduced. The maximum di ethyl eater substitution is limited by knock or emissions of carbon monoxide and total hydrocarbons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.