Background: Simultaneous ventilation of two patients, e.g. due to a shortage of ventilators in a pandemic, may result in hypoventilation in one patient and hyperinflation in the other patient. Methods: In a simulation of double patient ventilation using artificial lungs with equal compliances (70mL∙mbar-1), we tried to voluntarily direct gas flow to one patient by using 3D-printed y-adapters and stenosis adapters during volume-, and pressure-controlled ventilation. Subsequently, we modified the model using a special one-way valve on the limited flow side and measured in pressure-controlled ventilation with the flow sensor adjusted to either side in a second and third setup. In the last setup, we also measured with different lung compliances.Results: Volume- or pressure-controlled ventilation using standard connection tubes with the same compliance in each lung resulted in comparable minute volumes in both lungs, even if one side was obstructed to 3mm (6.6±0.2vs.6.5±0.1L for volume-controlled ventilation, p=.25 continuous severe alarm and 7.4±0.1vs.6.1±0.1L for pressure-controlled ventilation, p=.02 no alarm). In the second setup, pressure-controlled ventilation resulted at 3mm flow limitation in minute ventilation of 9.4±0.3vs3.5±0.1L∙min-1, p=.001. In a third setup using the special one-way valve and the flow sensor on the unobstructed side, pressure-controlled ventilation resulted at 3mm flow limitation in minute ventilation of 7.4±0.2vs3±0L∙min-1, at the compliance of 70mL∙mbar-1 for both lungs, 7.2±0vs4.1±0L∙ min-1, at the compliances of 50 vs. 70mL∙mbar-1, and 7.2±0.2vs5.7±0L∙ min-1, at the compliance of 30 vs. 70mL∙mbar-1 (all p=.001).Conclusions: Overriding a modern intensive care ventilator's safety features are possible, thereby ventilating two lungs with one ventilator simultaneously in a laboratory simulation using 3D-printed y-adapters. Directing tidal volumes in different pulmonary conditions towards one lung using 3D-printed flow limiters with diameters <6mm was also possible. While this ventilation setting was technically feasible in a bench model, it would be volatile, if not dangerous in a clinical situation.
Background: Simultaneous ventilation of two patients, e.g., due to a shortage of ventilators in a pandemic, may result in hypoventilation in one patient and hyperinflation in the other patient. Methods: In a simulation of double patient ventilation using artificial lungs with equal compliances (70mL∙mbar-1), we tried to voluntarily direct gas flow to one patient by using 3D-printed y-adapters and stenosis adapters during volume-, and pressure-controlled ventilation. Subsequently, we modified the model using a special one-way valve on the limited flow side and measured in pressure-controlled ventilation with the flow sensor adjusted on either side in a second and third setup. In the last setup, we also measured with different lung compliances.Results: Volume- or pressure-controlled ventilation using standard connection tubes with the same compliance in each lung resulted in comparable minute volumes in both lungs, even if one side was obstructed to 3mm (6.6±0.2vs.6.5±0.1L for volume-controlled ventilation, p=.25 continuous severe alarm and 7.4±0.1vs.6.1±0.1L for pressure-controlled ventilation, p=.02 no alarm). In the second setup, pressure-controlled ventilation resulted at a 3mm flow limitation in minute ventilation of 9.4±0.3vs3.5±0.1L∙min-1, p=.001. In a third setup using the special one-way valve and the flow sensor on the unobstructed side, pressure-controlled ventilation resulted at a 3mm flow limitation in minute ventilation of 7.4±0.2vs3±0L∙min-1, at the compliance of 70mL∙mbar-1 for both lungs, 7.2±0vs4.1±0L∙ min-1, at the compliances of 50 vs. 70mL∙mbar-1, and 7.2±0.2vs5.7±0L∙ min-1, at the compliance of 30 vs. 70mL∙mbar-1 (all p=.001).Conclusions: Overriding a modern intensive care ventilator's safety features are possible, thereby ventilating two lungs with one ventilator simultaneously in a laboratory simulation using 3D-printed y-adapters. Directing tidal volumes in different pulmonary conditions towards one lung using 3D-printed flow limiters with diameters <6mm was also possible. While this ventilation setting was technically feasible in a bench model, it would be volatile, if not dangerous in a clinical situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.