Extensions and crossed modules of Lie type superalgebras are introduced and studied. We construct homology and cohomology theories of Lie-type superalgebras. The notion of left super-invariance for a bilinear form is defined and we consider Lie type superalgebras endowed with nondegenerate, supersymmetric and left super-invariant bilinear form. Such Lie type superalgebras are called pseudo quadratic Lie type superalgebras. We show that any pseudo quadratic Lie type superalgebra induces a Jacobi-Jordan superalgebra. By using the method of double extension, we study pseudo quadratic Lie type superalgebras and theirs associated Jacobi-Jordan superalgebras.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.