Surfactants in aqueous solutions self-assemble in the presence of salt, to form long, flexible, wormlike micelles (WLM). WLM solutions exhibit viscoelastic properties and are used in many applications, such as for cosmetic products, drag reduction, and hydraulic fracturing. Understanding the coalescence stability of bubbles in WLM solutions is important for the development of WLM based products that require a stable dispersion of bubbles. In this paper, we investigate the thin film drainage dynamics leading up to the coalescence of bubbles at flat WLM solution−air interfaces. The salts and surfactant type and concentrations were chosen so as to have the viscoelastic properties of the tested WLM solutions span over 2 orders of magnitude in moduli and relaxation times. The various stages in drainage and coalescence, the formation of a thick region at the apex (a dimple), the thinning and washout of this dimple, and the final stages of drainage before rupture, are modified by the viscoelasticity of the wormlike micellar solutions. As a result of the unique viscoelastic properties of the WLM solutions, we also observe a number of interesting fluid dynamic phenomena during the drainage processes including elastic recoil, thin film ripping, and single-step terminal drainage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.