The subauroral polarization streams (SAPS) are latitudinally narrow regions of westward directed flows observed equatorward of the evening sector auroral oval. Previous studies have shown that SAPS generally occur during geomagnetically disturbed conditions and exhibit a strong dependence on geomagnetic activity. In this paper, we present the first comprehensive statistical study of SAPS using measurements from the U.S. midlatitude Super Dual Auroral Radar Network (SuperDARN) radars. The study period spans January 2011 to December 2014, and the results show that SuperDARN radars observe SAPS over a broad range of activity levels spanning storm time and nonstorm conditions. During relatively quiet conditions (−10 nT
The amplitude and phase scintillation indices are customarily obtained by specialised GPS Ionospheric Scintillation and TEC Monitors (GISTMs) from L1 signal recorded at the rate of 50 Hz. The scintillation indices S4 and σΦ are stored in real time from an array of high-rate scintillation receivers of the Canadian High Arctic Ionospheric Network (CHAIN). Ionospheric phase scintillation was observed at high latitudes during a moderate geomagnetic storm (Dst = −61 nT) that was caused by a moderate solar wind plasma stream compounded with the impact of two coronal mass ejections. The most intense phase scintillation (σΦ ~ 1 rad) occurred in the cusp and the polar cap where it was co-located with a strong ionospheric convection, an extended tongue of ionisation and dense polar cap patches that were observed with ionosondes and HF radars. At sub-auroral latitudes, a sub-auroral polarisation stream that was observed by mid-latitude radars was associated with weak scintillation (defined arbitrarily as σΦ < 0.5 rad). In the auroral zone, moderate scintillation coincided with auroral breakups observed by an all-sky imager, a riometer and a magnetometer in Yellowknife. To overcome the limited geographic coverage by GISTMs other GNSS data sampled at 1 Hz can be used to obtain scintillation proxy indices. In this study, a phase scintillation proxy index (delta phase rate, DPR) is obtained from 1-Hz data from CHAIN and other GPS receivers. The 50-Hz and 1-Hz phase scintillation indices are correlated. The percentage occurrences of σΦ > 0.1 rad and DPR > 2 mm s−1, both mapped as a function of magnetic latitude and magnetic local time, are very similar
Subauroral polarization stream (SAPS) is latitudinally narrow flow channels of large westward plasma drifts in the subauroral ionosphere. In this study, the global structure and dynamic evolution of SAPS are investigated by using the Coupled Magnetosphere‐Ionosphere‐Thermosphere model with ring current extension, namely, the Lyon‐Fedder‐Mobarry‐Thermosphere Ionosphere Electrodynamics General Circulation Model‐Rice Convection Model, to simulate the 2013 St. Patrick's Day storm event. This is the first time that the global distribution and temporal evolution of SAPS are investigated using first‐principle models. The model shows a strong westward ion drift channel formed equatorward of the auroral electron precipitation boundary on the duskside, which is identified as the SAPS structure. The simulated ion drift velocity and auroral electron precipitation sampled along the trajectory of the Defense Meteorological Satellite Program F18 satellite are in good agreement with the satellite measurements. SAPS initiate in the predusk sector when the interplanetary magnetic field turns southward. SAPS latitude generally decreases with magnetic local time from dusk to midnight. The SAPS channel shows wedge, inverse wedge, and crescent morphologies during the storm and becomes discontinuous when the interplanetary magnetic field is weakly southward. The SAPS mean latitude has a correlation coefficient of 0.77 with the Dst index. The mean latitude moves equatorward, and the flow channel broadens in the storm main phase. The simulation results illustrate both the global distribution and highly dynamic behavior of SAPS that are not readily apparent from the observation data.
[1] During geomagnetically disturbed conditions the midlatitude ionosphere is subject to intense poleward directed electric fields in the dusk-midnight sector. These electric fields lead to the generation of a latitudinally narrow westward directed flow channel in the subauroral region called a subauroral polarization stream (SAPS). If the magnetic field lines are treated as equipotentials, electrodynamic events such as SAPS are expected to occur simultaneously at magnetically conjugate locations with similar features. In this paper we present simultaneous observations of a SAPS event in both hemispheres made by midlatitude SuperDARN radars with conjugate fields-of-view. We analyze the relation between the geomagnetic conditions and the characteristics of the channels such as latitudinal location, electric field, total potential variations across the channels, and Pedersen current. The results suggest a strong correlation between the strength of the ring current and the latitudinal location of the channel. An inter-hemispheric comparison of the characteristics of the channel indicates that the potential variations across the channels are similar while the electric fields, Pedersen currents and latitudinal widths of the channel exhibit differences that are consistent with equal potential variations. We attribute these differences to seasonal differences in ionospheric conductivity between the hemispheres and magnetic distortion effects in the inner magnetosphere.
It has been reported that the dynamics of energetic (tens to hundreds of keV) electrons and ions is inconsistent with the theoretical picture in which the large-scale electric field is a superposition of corotation and convection electric fields. Combining one year of measurements by the Super Dual Auroral Radar Network, DMSP F-18, and the Van Allen Probes, we show that subauroral polarization streams (SAPSs) are observed when energetic electrons have penetrated below L = 4. Outside the plasmasphere in the premidnight region, potential energy is subtracted from the total energy of ions and added to the total energy of electrons during SAPS onset. This potential energy is converted into radial motion as the energetic particles drift around Earth and leave the SAPS azimuthal sector. As a result, energetic electrons are injected deeper than energetic ions when SAPSs are included in the large-scale electric field picture, in line with observations.Plain Language Summary The interaction between the Sun and the Earth's magnetic field often transmits significant energy to the electrons and protons present in the magnetospheric tail, a region of space located far from the Earth's nightside. As a result, these particles move closer to the Earth. They are "injected" into the Earth's inner space environment. Since the 1970s, scientists have theorized that electrons and protons with the same initial kinetic energy starting from the same radial location have about the same distance of closest approach to the Earth. Yet recent observations from the Van Allen Probes reveal that this is not the case! Electrons appear to be systematically injected "deeper" than protons. So what happens along the way to make electrons approach Earth at closer distances? To answer this question, we combine observations from both space and the ground. We show that a localized source of electric fields called a subauroral polarization stream (aka a "SAPS") is always present during these injections. We argue that a SAPS acts like a marathon aid station for electrons in that it provides them with additional energy. As a result, electrons "move faster" and approach the Earth at closer distances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.