BackgroundForty million adults in the US suffer from anxiety disorders, making these the most common forms of mental illness. Transient receptor potential channel canonical subfamily (TRPC) members 4 and 5 are non-selective cation channels highly expressed in regions of the cortex and amygdala, areas thought to be important in regulating anxiety. Previous work with null mice suggests that inhibition of TRPC4 and TRPC5 may have anxiolytic effects.HC-070 in vitroTo assess the potential of TRPC4/5 inhibitors as an avenue for treatment, we invented a highly potent, small molecule antagonist of TRPC4 and TRPC5 which we call HC-070. HC-070 inhibits recombinant TRPC4 and TRPC5 homomultimers in heterologous expression systems with nanomolar potency. It also inhibits TRPC1/5 and TRPC1/4 heteromultimers with similar potency and reduces responses evoked by cholecystokinin tetrapeptide (CCK-4) in the amygdala. The compound is >400-fold selective over a wide range of molecular targets including ion channels, receptors, and kinases.HC-070 in vivoUpon oral dosing in mice, HC-070 achieves exposure levels in the brain and plasma deemed sufficient to test behavioral activity. Treatment with HC-070 attenuates the anxiogenic effect of CCK-4 in the elevated plus maze (EPM). The compound recapitulates the phenotype observed in both null TRPC4 and TRPC5 mice in a standard EPM. Anxiolytic and anti-depressant effects of HC-070 are also observed in pharmacological in vivo tests including marble burying, tail suspension and forced swim. Furthermore, HC-070 ameliorates the increased fear memory induced by chronic social stress. A careful evaluation of the pharmacokinetic-pharmacodynamic relationship reveals that substantial efficacy is observed at unbound brain levels similar to, or even lower than, the 50% inhibitory concentration (IC50) recorded in vitro, increasing confidence that the observed effects are indeed mediated by TRPC4 and/or TRPC5 inhibition. Together, this experimental data set introduces a novel, high quality, small molecule antagonist of TRPC4 and TRPC5 containing channels and supports the targeting of TRPC4 and TRPC5 channels as a new mechanism of action for the treatment of psychiatric symptoms.
Ifenprodil (1) represents a new class of N-methyl-D-aspartate (NMDA) antagonist. This drug also possesses potent activity at several other brain receptors (most notably alpha 1 adrenergic receptors). We have prepared the enantiomers and diastereomers of ifenprodil along with a series of partial structures in order to explore the basic structure activity relations within this class of compounds. From this study, it is clear that alpha 1 adrenergic and NMDA receptor activities may be separated by selection of the threo relative stereochemistry. Examination of the optical isomers of threo-ifenprodil (2) reveals that no further improvement in receptor selectivity is gained from either antipode. Individual removal of most of the structural fragments from the ifenprodil molecule generally results in less active compounds although fluorinated derivative 9 with threo relative stereochemistry is somewhat more potent and substantially more selective for the NMDA receptor. Finally a minimum structure for activity in this series (14) has been identified. This stripped-down version of ifenprodil possesses nearly equivalent affinity for the NMDA receptor with no selectivity over alpha 1 adrenergic receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.