Abstract-Electromagnetic field modal expansion is traditionally an effective technique for solving Maxwell's Equations for numerous high-frequency engineering problems. In this paper, an alternative form of electromagnetic field representation is described. It is based on the Riemann-Silberstein vectors, which are a linear combination of the electric and magnetic field vectors. Utilizing such combination in homogeneous space, Maxwell's Equations are converted into a system of two independent equations. Under these circumstances, each vector describes the total electromagnetic field of an ideal circular polarization. Electromagnetic fields are simply expressed in the form of the Riemann-Silberstein vectors using the helical coordinate system and special functions, which form a set of generalized spherical harmonics. The new representation of vector spherical harmonics differs in simplicity and symmetry while having a more physically apparent expression. The amount of computational work is reduced due to the initial independence of the Riemann-Silberstein vectors. The purpose of this paper is to show the efficiency of a new approach that is based on Riemann-Silberstein vector field representation and spherical wave expansion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.