Red coleoptile is an easily observed trait in Triticum aestivum and can provide some protection against stress. Here, TaMYB-A1 or TuMYB-A1, homologous to TaMYB-D1, which controls red coleoptile formation in the common wheat cultivar 'Gy115', was isolated from eight T. aestivum and 34 T. urartu cultivars. The genome sequence of TaMYB-A1 was 867 bp with an intron of 93 bp, which was similar to the MYBs regulating anthocyanin biosynthesis in T. aestivum but different from other MYB transcription factors regulating anthocyanin biosynthesis. TaMYB-A1 had an integrated DNA-binding domain of 102 amino acids and a transcriptional domain of 42 amino acids, which was responsible for regulating anthocyanin biosynthesis. TaMYB-A1 was assigned to the same branch as the MYBs regulating anthocyanin biosynthesis in a phylogenetic tree. A transient expression analysis showed that TaMYB-A1 induced 'Opata' coleoptile cells to synthesize anthocyanin with the help of ZmR. A non-functional allele of TaMYB-a1 existed in common wheat cultivars containing rc-a1. One single nucleotide was deleted 715 bp after the start codon in TaMYB-a1 compared with TaMYB-A1. The deletion caused a frame shift mutation, destroyed the DNA transcription activator domain, and resulted in TaMYB-a1 losing its ability to regulate anthocyanin biosynthesis in 'Opata' coleoptile cells. Those cultivars with functional TaMYB-A1 or TuMYB-A1 have red coleoptiles. The isolation of TaMYB-A1 should aid in understanding the molecular mechanisms of coleoptile traits in T. aestivum.
Purple pericarp is an interesting and useful trait in Triticum aestivum, but the molecular mechanism behind this phenotype remains unclear. The allelic variation in the MYB transcriptors is associated with the phenotype of pigmented organs in many plants. In this study, a MYB transcription factor gene, TaMYB3, was isolated using homology-based cloning and a differentially expressed gene mining approach, to verify the function of the MYB transcriptor in the purple pericarp. The coding sequence of TaMYB3 in cultivar Gy115 was the same as that in cultivar Opata. TaMYB3 was localized to FL0.62-0.95 on chromosome 4BL. The TaMYB3 protein contains DNA-binding and transcription-activation domains, and clustered on a phylogenetic tree with the MYB proteins that regulates anthocyanin and proanthocyanin biosynthesis. TaMYB3 localized in the nuclei of Arabidopsis thaliana and wheat protoplasts after it was transiently expressed with PEG transformation. TaMYB3 induced anthocyanin synthesis in the pericarp cells of Opata in the dark in collaboration with the basic helix-loop-helix protein ZmR, which is also the function of ZmC1. However, TaMYB3 alone did not induce anthocyanin biosynthesis in the pericarp cells of the white grain wheat cultivar Opata in the light after bombardment, whereas the single protein ZmR did. Light increased the expression of TaMYB3 in the pericarp of Gy115 and Opata, but only induced anthocyanin biosynthesis in the grains of Gy115. Our results extend our understanding of the molecular mechanism of the purple pericarp trait in T. aestivum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.