The first tricoordinate fluorosilylenoid, (t-Bu2MeSi)2SiFLi.3THF (1), was synthesized, and its X-ray molecular structure was determined. 1 was synthesized in 40% yield by a bromine-lithium exchange reaction in THF of the corresponding fluorobromosilane with t-Bu2MeSiLi. 1 is best described as an R2SiF- anion attracted to a (Li.3THF)+ cation with a small contribution of resonance structure that consists of a silylene fragment and FLi.3THF. 1 reacts as a nucleophile with MeCl, PhH2SiCl, H2O, and MeOH, as an electrophile with MeLi, and as a silylene with Li (or t-BuLi) and Na, yielding alpha-lithium and alpha-sodium silyl radicals, respectively. Either photolysis or thermolysis of 1 yields the corresponding disilene R2Si=SiR2 (R = t-Bu2MeSi), probably via dimerization of R2Si:.
The fluorescence intensity of phosphorus corroles increases upon meso-aryl C-F/C-H and P-OH/P-F substitutions, the latter affects corrole-centered redox processes more than C-H/C-F substitution on the corrole's skeleton, and the presence of F atoms allows for the first experimental insight into the electronic structures of oxidized corroles. Experimental and theoretical methodologies reveal that mono- but not bis-chlorosulfonation of the corrole skeleton is under kinetic control. Selective introduction of heavy atoms leads to complexes that are phosphorescent at room temperature.
((t)Bu(2)MeSi)(2)Sn=Sn(SiMe(t)Bu(2))(2) 1, prepared by the reaction of (t)Bu(2)MeSiNa with SnCl(2)-diox in THF and isolated as dark-green crystals, represents the first example of acyclic distannene with a Sn=Sn double bond that is stable both in the crystalline form and in solution. This was proved by the crystal and NMR spectral data of 1. Distannene 1 has these peculiar structural features: a shortest among all acyclic distannenes Sn=Sn double bond of 2.6683(10) A, a nearly planar geometry around both Sn atoms, and a highly twisted Sn=Sn double bond. The reactions of 1 toward carbon tetrachloride and phenylacetylene also correspond to the reactivity anticipated for the Sn=Sn double bond. The one-electron reduction of 1 with potassium produced the distannene anion radical, the heavy analogue of alkene ion radicals, for which the particular crystal structure and low-temperature EPR behavior are also discussed.
The steric properties of various
nitrogen substituents on amidines
were tuned in order to obtain group 4 mono- and bis(amidinate) dimethylamido
or chloride complexes. The amidinate dimethylamido and chloride complexes
were prepared, and their solid-state as well as their solution-state
structures were studied. After the activation by MAO, these complexes
were tested in the polymerization of propylene and ethylene. A noticeable
influence of the amidine carbon and nitrogen substituents on the activity
of the catalyst and properties of the obtained polymer was observed.
Further, a plausible mechanism for the ethylene polymerization process
is presented taking into account a combination of ESR-C60 and MALDI-TOF experiments, shedding light on the nature of the catalytic
species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.