This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces. It provides a historical background and literature survey, but focuses on recent progress, identifying the most exciting new scientific results and pointing to promising future research directions. It starts with an introduction and overview of how basic magnetic properties are affected by interfaces, then turns to a discussion of charge and spin transport through and near interfaces and how these can be used to control the properties of the magnetic layer. Important concepts include spin accumulation, spin currents, spin transfer torque, and spin pumping. An overview is provided to the current state of knowledge and existing review literature on interfacial effects such as exchange bias, exchange spring magnets, spin Hall effect, oxide heterostructures, and topological insulators. The article highlights recent discoveries of interface-induced magnetism and non-collinear spin textures, non-linear dynamics including spin torque transfer and magnetization reversal induced by interfaces, and interfacial effects in ultrafast magnetization processes.
We report the thermal conductivity and specific heat of amorphous silicon thin films measured from 5-300 K using silicon-nitride membrane-based microcalorimeters. Above 50 K the thermal conductivity of thin-film amorphous silicon agrees with values previously reported by other authors. However, our data show no plateau, with a low T suppression of the thermal conductivity that suggests that the scattering of long wavelength, low Q vibrations goes as Q2. The specific heat shows Debye-like behavior below 15 K, with theta(D) = 487 +/- 5 K, and is consistent with a very small contribution of tunneling states in amorphous silicon. Above 15 K, the specific heat deviates less from Debye behavior than does its crystalline allotrope, indicating no significant excess modes (boson peak) in amorphous silicon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.