Abnormalities in gas exchange during general anaesthesia are caused partly by atelectasis. Inspiratory pressures of approximately 40 cm H2O are required to fully re-expand healthy but collapsed alveoli. However, without PEEP these re-expanded alveoli tend to collapse again. We hypothesized that an initial increase in pressure would open collapsed alveoli; if this inspiratory recruitment is combined with sufficient end-expiratory pressure, alveoli will remain open during general anaesthesia. We tested the effect of an 'alveolar recruitment strategy' on arterial oxygenation and lung mechanics in a prospective, controlled study of 30 ASA II or III patients aged more than 60 yr allocated to one of three groups. Group ZEEP received no PEEP. The second group received an initial control period without PEEP, and then PEEP 5 cm H2O was applied. The third group received an increase in PEEP and tidal volumes until a PEEP of 15 cm H2O and a tidal volume of 18 ml kg-1 or a peak inspiratory pressure of 40 cm H2O was reached. PEEP 5 cm H2O was then maintained. There was a significant increase in median PaO2 values obtained at baseline (20.4 kPa) and those obtained after the recruitment manoeuvre (24.4 kPa) at 40 min. This latter value was also significantly higher than PaO2 measured in the PEEP (16.2 kPa) and ZEEP (18.7 kPa) groups. Application of PEEP also had a significant effect on oxygenation; no such intra-group difference was observed in the ZEEP group. No complications occurred. We conclude that during general anaesthesia, the alveolar recruitment strategy was an efficient way to improve arterial oxygenation.
A modification of a computerized tracer gas (SF6) washout method was designed for serial measurements of functional residual capacity (FRC) and ventilation homogeneity in mechanically ventilated very-low-birth-weight infants with tidal volumes down to 4 ml. The method, which can be used regardless of the inspired O2 concentration, gave accurate and reproducible results in a lung model and good agreement compared with He dilution in rabbits. FRC was measured during 2-4 cmH2O of positive end-expiratory pressure (PEEP) in 15 neonates (700-1,950 g), most of them with mild-to-moderate respiratory distress syndrome. FRC increased with body weight and decreased (P less than 0.05) with increasing O2 requirement. Change to zero end-expiratory pressure caused an immediate decrease in FRC by 29% (P less than 0.01) and gave FRC (ml) = -1.4 + 17 x weight (kg) (r = 0.83). Five minutes after PEEP was discontinued (n = 12), FRC had decreased by a further 16% (P less than 0.01). The washout curves indicated a near-normal ventilation homogeneity not related to changes in PEEP. This was interpreted as evidence against the presence of large volumes of trapped alveolar gas.
We measured clearance of 99mTc-labeled diethylenetriamine pentaacetic acid (99mTc-DTPA) in rabbits with experimentally increased alveolar surfactant content. In one group of animals, surfactant production was increased by treatment with ambroxol, and another group of animals was treated with tracheal instillation of natural surfactant. A group of untreated control animals and animals treated with instillation of saline were also studied. Clearance was measured during standard conditions of mechanical ventilation and during ventilation with large tidal volumes. In ambroxol- and surfactant-treated groups, clearance rate was reduced compared with untreated control animals. In contrast, clearance rate increased after saline instillation. The differences were observed at both modes of ventilation. The findings indicate that the pulmonary surfactant system is a rate-limiting factor for the clearance of 99mTc-DTPA and that the volume dependence of clearance is not explained by stretching of the alveolar wall only.
Experimental observations are consistent with the proposed theory of perfluorocarbon-related gas osmosis through micro-bubbles that prevent complete lung collapse as observed upon opening the thoracic cavity of test animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.