A classical trajectory model has been used to predict total cross sections of single and double ionizing processes (including capture processes) for several ion-biological molecule collisional systems in the intermediate and high energy range. In this work, the systems studied are water, adenine or cytosine targets ionized by protons and alpha-particles with kinetic energies ranging from 25 keV amu(-1) to 3000 keV amu(-1). In our approach, we have combined several features of two classical methods namely the classical trajectory Monte Carlo (CTMC) and the classical over-barrier (COB) models. For the water target, our results are compared, for high kinetic energies of incident particles, to the available experimental and theoretical results, and reasonable agreement are generally observed especially for the single ionization (liberated electron moves freely after the collision) and the single capture (liberated electron captured by the projectile), both processes representing ionizing processes. Considering the double ionizing processes which have been largely less studied, the unique comparison concerns the double capture process for alpha+H(2)O collision for which we reproduce the experiment reasonably well. Finally, we present total cross sections of single and double ionizing processes for biological targets such as adenine and cytosine where no experimental results exist till now.
In this work, eccentric Bragg gratings are photoinscribed in telecommunication-grade optical fibers. They are localized close to the core-cladding interface, yielding strong cladding mode resonance couplings and high photoinduced birefringence. Their transmitted amplitude spectrum is measured with polarized light while they are exposed to temperature changes up to 900°C. Despite the gratings' overall good thermal stability that confirms their robustness for high-temperature refractometry, we report an interesting polarization effect depending on both the cladding mode resonance family and mode order. While the core mode birefringence decreases with growing temperatures, certain cladding mode resonances show an increase in wavelength splitting between their orthogonally polarized components. This differential behavior is of high interest in developing high-resolution, multiparametric sensing platforms.
Our previous analytical formalism developed in the second Born approximation is completed by the exchange effect between the free outgoing electrons. This formalism is used to predict the triple differential cross sections for the single ionization of a water molecule by electron impact. The results are compared to previous experimental and theoretical findings given in coplanar symmetric and asymmetric geometries. Good agreement with the experiment is given by the present formalism. The discussion of the present results can be used to improve the different models used to study the ionization of a water molecule by charged particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.