The Copernicus Sentinel-2 program now provides multispectral images at a global scale with a high revisit rate. In this paper we explore the usage of convolutional neural networks for urban change detection using such multispectral images. We first present the new change detection dataset that was used for training the proposed networks, which will be openly available to serve as a benchmark. The Onera Satellite Change Detection (OSCD) dataset is composed of pairs of multispectral aerial images, and the changes were manually annotated at pixel level. We then propose two architectures to detect changes, Siamese and Early Fusion, and compare the impact of using different numbers of spectral channels as inputs. These architectures are trained from scratch using the provided dataset.
Over the recent years, there has been an increasing interest in large-scale classification of remote sensing images. In this context, the Inria Aerial Image Labeling Benchmark has been released online in December 2016. In this paper, we discuss the outcomes of the first year of the benchmark contest, which consisted in dense labeling of aerial images into building / not building classes, covering areas of five cities not present in the training set. We present four methods with the highest numerical accuracies, all four being convolutional neural network approaches. It is remarkable that three of these methods use the U-net architecture, which has thus proven to become a new standard in image dense labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.