In this work, the effect of fracture network connectivity on hydraulic fracturing effectiveness was investigated using a discrete element numerical model. The simulation results show that natural fracture density can significantly affect the hydraulic fracturing effectiveness, which was characterized by either the ratio of stimulated natural fracture area to hydraulic fracture area or the leakoff ratio. The sparse DFN cases showed a flat microseismic distribution zone with few events, while the dense DFN cases showed a complex microseismic map which indicated significant interaction between the hydraulic fracture and natural fractures. Further, it was found that the initial natural fracture aperture affected the hydraulic fracturing effectiveness more for the dense natural fracture case than for the sparse less dense case. Overall, this work shows that fracture network connectivity plays a critical role in hydraulic fracturing effectiveness, which, in-turn, affects treating pressures, the created microseismicity and corresponding stimulated volume, and well production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.