This paper describes CAVIAR, a massively parallel hardware implementation of a spike-based sensing-processing-learning-actuating system inspired by the physiology of the nervous system. CAVIAR uses the asychronous address-event representation (AER) communication framework and was developed in the context of a European Union funded project. It has four custom mixed-signal AER chips, five custom digital AER interface components, 45k neurons (spiking cells), up to 5M synapses, performs 12G synaptic operations per second, and achieves millisecond object recognition and tracking latencies.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In the Von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018 calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this Roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The Roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this Roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community.
Interdisciplinary research broadens the view of particular problems yielding fresh and possibly unexpected insights. This is the case of neuromorphic engineering where technology and neuroscience cross-fertilize each other. For example, consider on one side the recently discovered memristor, postulated in 1974, thanks to research in nanotechnology electronics. On the other side, consider the mechanism known as Spike-Time-Dependent-Plasticity (STDP) which describes a neuronal synaptic learning mechanism that outperforms the traditional Hebbian synaptic plasticity proposed in 1949. STDP was originally postulated as a computer learning algorithm, and is being used by the machine intelligence and computational neuroscience community. At the same time its biological and physiological foundations have been reasonably well established during the past decade. If memristance and STDP can be related, then (a) recent discoveries in nanophysics and nanoelectronic principles may shed new lights into understanding the intricate molecular and physiological mechanisms behind STDP in neuroscience, and (b) new neuromorphic-like computers built out of nanotechnology memristive devices could incorporate the biological STDP mechanisms yielding a new generation of self-adaptive ultra-high-dense intelligent machines. Here we show that by combining memristance models with the electrical wave signals of neural impulses (spikes) converging from pre- and post-synaptic neurons into a synaptic junction, STDP behavior emerges naturally. This result serves to understand how neural and memristance parameters modulate STDP, which might bring new insights to neurophysiologists in searching for the ultimate physiological mechanisms responsible for STDP in biological synapses. At the same time, this result also provides a direct mean to incorporate STDP learning mechanisms into a new generation of nanotechnology computers employing memristors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.