This paper will discuss the design and construction of BESIII [1], which is designed to study physics in the τ-charm energy region utilizing the new high luminosity BEPCII double ring e + ecollider [2]. The expected performance will be given based on Monte Carlo simulations and results of cosmic ray and beam tests. In BESIII, tracking and momentum measurements for charged particles are made by a cylindrical multilayer drift chamber in a 1 T superconducting solenoid. Charged particles are identified with a time-of-flight system based on plastic scintillators in conjunction with dE/dx (energy loss per unit pathlength) measurements in the drift chamber. Energies of electromagnetic showers are measured by a CsI(Tl) crystal calorimeter located inside the solenoid magnet. Muons are identified by arrays of resistive plate chambers in the steel magnetic flux return. The level 1 trigger system, Data Acquisition system and the event filter system based on networked computers will also be described.
The general large‐scale synthesis of a family of single‐crystalline transition metal tungstate nanorods/nanowires is easily realized by a hydrothermal crystallization technique under mild conditions using cheap and simple inorganic salts as precursors. Uniform tungstate nanorods/nanowires such as MWO4 (M = Zn, Mn, Fe), Bi2WO6, Ag2WO4, and Ag2W2O7 with diameters of 20–40 nm, lengths of up to micrometers, and controlled aspect ratios can be readily obtained by hydrothermal transformation and recrystallization of amorphous particulates. This novel and efficient pathway toward various kinds of related low‐dimensional tungstate nanocrystals under mild conditions could open new opportunities for further investigating the novel properties of tungstate materials.
A sub-array of the Large High Altitude Air Shower Observatory (LHAASO), KM2A is mainly designed to observe a large fraction of the northern sky to hunt for γ-ray sources at energies above 10 TeV. Even though the detector construction is still underway, half of the KM2A array has been operating stably since the end of 2019. In this paper, we present the KM2A data analysis pipeline and the first observation of the Crab Nebula, a standard candle in very high energy γ-ray astronomy. We detect γ-ray signals from the Crab Nebula in both energy ranges of 10
100 TeV and
100 TeV with high significance, by analyzing the KM2A data of 136 live days between December 2019 and May 2020. With the observations, we test the detector performance, including angular resolution, pointing accuracy and cosmic-ray background rejection power. The energy spectrum of the Crab Nebula in the energy range 10-250 TeV fits well with a single power-law function dN/dE = (1.13
0.05
0.08
)
10
(E/20 TeV)
cm
s
TeV
. It is consistent with previous measurements by other experiments. This opens a new window of γ-ray astronomy above 0.1 PeV through which new ultrahigh-energy γ-ray phenomena, such as cosmic PeVatrons, might be discovered.
Some gamma-ray bursts (GRBs) have a tera–electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory of the bright GRB 221009A, which serendipitously occurred within the instrument field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger, then rose to a peak about 10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.