our data suggest: (i) C14ORF28, GNB2L1, MLLT3, DRD2 and DARPP-32 are important in the pathogenesis of schizophrenia and bipolar disorder; (ii) these two disorders share common disease-related mechanisms linked to dopamine signalling; (iii) the expression of these genes is closely correlated; and (iv) DRD2 provides the initial trigger in the pathogenesis of these disorders.
Inhibitor of nuclear factor jB kinase-a (IKKa) is required for maintaining skin homeostasis and preventing skin tumorigenesis. However, its signaling has not been extensively investigated. In the present study, we generated two mouse lines that expressed different levels of transgenic IKKa in the basal epidermis under the control of keratin-5 promoter and further evaluated their effects on the major pathways of inflammation, proliferation, and differentiation in the skin. Regardless of the transgenic IKKa levels, the mice develop normally. Because IKKa deletion in keratinocytes blocks terminal differentiation and induces epidermal hyperplasia and skin inflammation, we depleted the endogenous IKKa in these transgenic mice and found that the transgenic IKKa represses epidermal thickness and induces terminal differentiation in a dose-dependent manner. Also, transgenic IKKa was found to elevate expression of Max dimer protein 1 (Mad1) and ovo-like 1, c-Myc antagonists, but repress activities of epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), Jun-amino-terminal kinases, c-Jun, signal transducer and activator of transcription 3 (Stat3), and growth factor levels in a dose-dependent fashion in the skin. Moreover, EGFR reduction represses IKKa deletion-induced excessive ERK, Stat3 and c-Jun activities, and skin inflammation. These new findings indicate that elevated IKKa expression not only represses epidermal thickness and induces terminal differentiation, but also suppresses skin inflammation by an integrated loop. Thus, IKKa maintains skin homeostasis through a broad range of signaling pathways.
Nuclear factor kappa B (NF-κB) signaling plays critical roles in many physiological and pathological processes, including regulating organogenesis. Down-regulation of NF-κB signaling during development results in hypohidrotic ectodermal dysplasia. The roles of NF-κB signaling in tooth development, however, are not fully understood. We examined mice overexpressing IKKβ, an essential component of the NF-κB pathway, under keratin 5 promoter (K5-Ikkβ). K5-Ikkβ mice showed supernumerary incisors whose formation was accompanied by up-regulation of canonical Wnt signaling. Apoptosis that is normally observed in wild-type incisor epithelium was reduced in K5-Ikkβ mice. The supernumerary incisors in K5-Ikkβ mice were found to phenocopy extra incisors in mice with mutations of Wnt inhibitor, Wise. Excess NF-κB activity thus induces an ectopic odontogenesis program that is usually suppressed under physiological conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.