Phantom equivalents of different human anatomical parts are routinely used for imaging system evaluation or dose calculations. The various recommendations on the generic phantom structure given by organizations such as the AAPM, are not always accurate when evaluating a very specific task. When we compared the AAPM head phantom containing 3 mm of aluminum to actual neuro-endovascular image guided interventions (neuro-EIGI) occurring in the Circle of Willis, we found that the system automatic exposure rate control (AERC) significantly underestimated the x-ray parameter selection. To build a more accurate phantom for neuro-EIGI, we reevaluated the amount of aluminum which must be included in the phantom. Human skulls were imaged at different angles, using various angiographic exposures, at kV’s relevant to neuro-angiography. An aluminum step wedge was also imaged under identical conditions, and a correlation between the gray values of the imaged skulls and those of the aluminum step thicknesses was established. The average equivalent aluminum thickness for the skull samples for frontal projections in the Circle of Willis region was found to be about 13 mm. The results showed no significant changes in the average equivalent aluminum thickness with kV or mAs variation. When a uniform phantom using 13 mm aluminum and 15 cm acrylic was compared with an anthropomorphic head phantom the x-ray parameters selected by the AERC system were practically identical. These new findings indicate that for this specific task, the amount of aluminum included in the head equivalent must be increased substantially from 3 mm to a value of 13 mm.
The detectors that are used for endovascular image-guided interventions (EIGI), particularly for neurovascular interventions, do not provide clinicians with adequate visualization to ensure the best possible treatment outcomes. Developing an improved x-ray imaging detector requires the determination of estimated clinical x-ray entrance exposures to the detector. The range of exposures to the detector in clinical studies was found for the three modes of operation: fluoroscopic mode, high frame-rate digital angiographic mode (HD fluoroscopic mode), and DSA mode. Using these estimated detector exposure ranges and available CMOS detector technical specifications, design requirements were developed to pursue a quantum limited, high resolution, dynamic x-ray detector based on a CMOS sensor with 50 μm pixel size. For the proposed MAF-CMOS, the estimated charge collected within the full exposure range was found to be within the estimated full well capacity of the pixels. Expected instrumentation noise for the proposed detector was estimated to be 50–1,300 electrons. Adding a gain stage such as a light image intensifier would minimize the effect of the estimated instrumentation noise on total image noise but may not be necessary to ensure quantum limited detector operation at low exposure levels. A recursive temporal filter may decrease the effective total noise by 2 to 3 times, allowing for the improved signal to noise ratios at the lowest estimated exposures despite consequent loss in temporal resolution. This work can serve as a guide for further development of dynamic x-ray imaging prototypes or improvements for existing dynamic x-ray imaging systems.
A family of imaging task-specific metrics designated Relative Object Detectability (ROD) metrics was developed to enable objective, quantitative comparisons of different x-ray systems. Previously, ROD was defined as the integral over spatial frequencies of the Fourier Transform of the object function, weighted by the detector DQE for one detector, divided by the comparable integral for another detector. When effects of scatter and focal spot unsharpness are included, the generalized metric, GDQE, is substituted for the DQE, resulting in the G-ROD metric. The G-ROD was calculated for two different detectors with two focal spot sizes using various-sized simulated objects to quantify the improved performance of new high-resolution CMOS detector systems. When a measured image is used as the object, a Generalized Measured Relative Object Detectability (GM-ROD) value can be generated. A neuro-vascular stent (Wingspan) was imaged with the high-resolution Micro-Angiographic Fluoroscope (MAF) and a standard flat panel detector (FPD) for comparison using the GM-ROD calculation. As the lower integration bound increased from 0 toward the detector Nyquist frequency, increasingly superior performance of the MAF was evidenced. Another new metric, the R-ROD, enables comparing detectors to a reference detector of given imaging ability. R-RODs for the MAF, a new CMOS detector and an FPD will be presented. The ROD family of metrics can provide quantitative more understandable comparisons for different systems where the detector, focal spot, scatter, object, techniques or dose are varied and can be used to optimize system selection for given imaging tasks.
Intracranial aneurysm (IA) embolization using Gugliemi Detachable Coils (GDC) under x-ray fluoroscopic guidance is one of the most important neuro-vascular interventions. Coil deposition accuracy is key and could benefit substantially from higher resolution imagers such as the micro-angiographic fluoroscope (MAF). The effect of MAF guidance improvement over the use of standard Flat Panels (FP) is challenging to assess for such a complex procedure. We propose and investigate a new metric, inter-frame cross-correlation sensitivity (CCS), to compare detector performance for such procedures. Pixel (P) and histogram (H) CCS’s were calculated as one minus the cross-correlation coefficients between pixel values and histograms for the region of interest at successive procedure steps. IA treatment using GDC’s was simulated using an anthropomorphic head phantom which includes an aneurysm. GDC’s were deposited in steps of 3 cm and the procedure was imaged with a FP and the MAF. To measure sensitivity to detect progress of the procedure by change in images of successive steps, an ROI was selected over the aneurysm location and pixel-value and histogram changes were calculated after each step. For the FP, after 4 steps, the H and P CCSs between successive steps were practically zero, indicating that there were no significant changes in the observed images. For the MAF, H and P CCSs were greater than zero even after 10 steps (30 cm GDC), indicating observable changes. Further, the proposed quantification method was applied for evaluation of seven patients imaged using the MAF, yielding similar results (H and P CCSs greater than zero after the last GDC deposition). The proposed metric indicates that the MAF can offer better guidance during such procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.