Casein kinase II (CK-II) is a ubiquitous protein kinase, localized to both nucleus and cytoplasm, with strong specificity for serine residues positioned within clusters of acidic amino acids. We have found that a number of nuclear oncoproteins share a CK-II phosphorylation sequence motif, including Myc, Myb, Fos, Ela and SV40 T antigen. In this paper we show that cellular myc-encoded proteins, derived from avian and human cells, can serve as substrates for phosphorylation by purified CK-II in vitro and that this phosphorylation is reversible. One-and two-dimensional mapping experiments demonstrate that the major phosphopeptides from in vivo phosphorylated Myc correspond to the phosphopeptides produced from Myc phosphorylated in vitro by CK-II. In addition, synthetic peptides with sequences corresponding to putative CK-II phosphorylation sites in Myc are subject to multiple, highly efficient phosphorylations by CK-11, and can act as competitive inhibitors of CK-II phosphorylation of Myc in vitro. We have used such peptides to map the phosphorylated regions in Myc and have located major CK-II phosphorylations within the central highly acidic domain and within a region proximal to the C terminus. Our results, along with previous studies on myc deletion mutants, show that Myc is phosphorylated by CK-II, or a kinase with similar specificity, in regions of functional importance. Since CK-II can be rapidly activated after mitogen treatment we postulate that CK-II mediated phosphorylation of Myc plays a role in signal transduction to the nucleus.
While the p34cdc2 kinase is considered to be a critical regulator of mitosis, its function has not yet been directly linked to one of the key events during the onset of mitosis: nuclear envelope breakdown. Here we show that a major structural protein of the nuclear envelope, lamin B2, is phosphorylated by p34cdc2. Results from two‐dimensional phosphopeptide mapping experiments demonstrate that the p34cdc2‐specific phosphopeptides represent both mitotic and interphase specific phosphorylations of lamin B2 and include the major interphase phosphorylation site. In mitotic cells we detected two distinct forms of lamin B2 which differ in electrophoretic mobility and in degree of phosphorylation. The phosphorylation pattern of lamin B2 generated in vitro by p34cdc2 was more closely related to the less phosphorylated mitotic lamin B2, suggesting that another kinase(s) in addition to p34cdc2 is involved in generating the mitotic phosphorylation pattern. In addition, we show that treatment of interphase cells with okadaic acid, a potent phosphatase inhibitor, leads to the acquisition of mitosis‐specific phosphopeptides and can reversibly increase the detergent‐solubility of lamin B2. However, the M‐phase‐like phosphorylation of lamin B2 in itself is not sufficient to induce its disassembly from the nuclear lamina suggesting that an additional event(s) besides phosphorylation is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.