Abstract. Highlights are presented from studies of the electric field data from various regions along the CLUS-TER orbit. They all point towards a very high coherence for phenomena recorded on four spacecraft that are separated by a few hundred kilometers for structures over the whole range of apparent frequencies from 1 mHz to 9 kHz. This presents completely new opportunities to study spatialtemporal plasma phenomena from the magnetosphere out to the solar wind. A new probe environment was constructed for the CLUSTER electric field experiment that now produces data of unprecedented quality. Determination of plasma flow in the solar wind is an example of the capability of the instrument.
The electric-field and wave experiment (EFW) on Cluster is designed to measure the electric-field and density fluctuations with sampling rates up to 36000 samples s -I. Langmuir probe sweeps can also be made to determine the electron density and temperature. The instrument has several important capabilities. These include (I) measurements of quasi-static electric fields of amplitudes up to 700 m V m -I with high amplitude and time resolution, (2) measurements over short periods of time of up to five simualtaneous waveforms (two electric signals and three magnetic signals from the seach coil magnetometer sensors) of a bandwidth of 4 kHz with high time resolution, (3) measurements of density fluctuations in four points with high time resolution. Among the more interesting scientific objectives of the experiment are studies of nonlinear wave phenomena that result in acceleration of plasma as well as large-and small-scale interferometric measurements. By using four spacecraft for large-scale differential measurements and several Langmuir probes on one spacecraft for small-scale interferometry, it will be possible to study motion and shape of plasma structures on a wide range of spatial and temporal scales. This paper describes the primary scientific objectives of the EFW experiment and the technical capabilities of the instrument.
Abstract. We present a classification of auroral forms in the dayside highlatitude ionosphere, based on ground observations from Svalbard. Having sorted the different auroral forms by magnetic local time (MLT) and morphological and optical spectral characteristics, we then study them as a function of the orientation of the interplanetary magnetic field (IMF). We find that the IMF clock angle 0 is a good parameter with which to order the different dayside auroras. This is illustrated by two case examples covering the whole dayside: (1) the 4-hour-long passage of the sheath region of the January l0 -ll, 1997, magnetic cloud and (2)
Continuous ground-based observations of the dayside aurora provide important information, complementary to the in situ measurements from satellites, on plasma transport and electromagnetic coupling between the magnetosheath and the magnetosphere. In this study, observations of the polar cusp/dayside oval aurora from Svalbard and simultaneous observations of the nightside aurora from Poker Flat, Alaska, and the interplanetary magnetic field from satellites are used to identify the ionospheric signatures of plasma transfer from the solar wind to the magnetosphere. The characteristics of motion, spatial scale, time of duration, and repetition frequency of certain dayside auroral forms which occur at the time of large-scale oval expansions (interplanetary magnetic field Bz < 0) are observed to be consistent with the expected optical signatures of plasma transfer through the dayside magnetopause boundary layer, associated with flux transfer events. Similarly, more large-scale (time and space) events are tentatively explained by the quasi steady state reconnection process. 1. 10,063 10,064 SANDHOLT ET AL.: MAGNETOPAUSE PLASMA TRANSFER AND DAYSIDE AURORA geomagnetic coordinates of these stations, Ny ,•lesund (NY•) and Longyearbyen (LYR) are 75.4 ø, 131.4 ø (NY•) and 74.4 ø, 130.9 ø (LYR). By this technique the dayside auroras can be observed within the range •69ø-80 ø geomagnetic latitude at midwinter. Local magnetic noon and solar noon at the recording sites occur at •0830 and • 1100 UT, respectively. An all-sky imaging photometer is operated at Ny fklesund. This instrument has a 155 ø field of view (spanning 1200 km for F-region emissions) and a threshold sensitivity of •30 R at 630 nm [cf. Carlson, 1984]. This instrument and an all-sky camera at LYR [Deehr et al., 1980] provided important supplementary information relative to the meridian profiles recorded by the scanning photometers. Dayside geomagnetic disturbances were recorded by standard magnetometers at the three Svalbard stations: Ny •lesund, Hornsund (73.5 ø geomagnetic latitude), and BjOrnOya (71.
[1] Spacecraft potential measurements by the EFW electric field experiment on the Cluster satellites can be used to obtain plasma density estimates in regions barely accessible to other type of plasma experiments. Direct calibrations of the plasma density as a function of the measured potential difference between the spacecraft and the probes can be carried out in the solar wind, the magnetosheath, and the plasmashere by the use of CIS ion density and WHISPER electron density measurements. The spacecraft photoelectron characteristic (photoelectrons escaping to the plasma in current balance with collected ambient electrons) can be calculated from knowledge of the electron current to the spacecraft based on plasma density and electron temperature data from the above mentioned experiments and can be extended to more positive spacecraft potentials by CIS ion and the PEACE electron experiments in the plasma sheet. This
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.