Background
Synovitis (SI) is one of the most common and serious orthopedic diseases in horses of different age, breed and sex, which contributes to the development of osteoarthritis. The burden of SI includes economic loss and represents a real challenge for current veterinary health care. At the molecular level, fibroblasts-like synoviocytes (FLS) are recognized as major cell populations involved in SI pathogenesis. In the course of SI, FLSs are losing their protective and pro-regenerative cytological features, become highly proliferative and initiate various stress signaling pathways.
Methods
Fibroblast-like synoviocytes were treated with LPS in order to generate SI in vitro model. Mitochondria were isolated from peripheral blood derived mononuclear cells and co-cultured with FLS. After 24 h of culture, cells were subjected to RT-qPCR, western blot, cytometric and confocal microscopy analysis.
Results
Mitochondrial transfer (MT) was observed in vitro studies using confocal microscopy. Further studies revealed, that MT to LPS-treated FLS reduced cell proliferation, modulated apoptosis and decreased inflammatory response. Overall, MT Resulted in the considerable recovery of recipient cells cytophysiological properties.
Conclusions
Presented data provides evidence that mitochondria transfersignificantly modulate FLS proliferative and metabolic activity through improved mitochondrial biogenesis and dynamics in activated FLS. Obtained results for the first time demonstrate that horizontal MT might be considered as a therapeutic tool for synovitis treatment; however, further clinical studies are strongly required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.