We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs), from their initiation, through the impulsive acceleration to the propagation phase. For a set of 95 CMEs we derived detailed height, velocity and acceleration profiles and statistically analysed characteristic CME parameters: peak acceleration, peak velocity, acceleration duration, initiation height, height at peak velocity, height at peak acceleration and size of the CME source region. The CME peak accelerations derived range from 20 to 6800 m s −2 and are inversely correlated to the acceleration duration and to the height at peak acceleration. 74% of the events reach their peak acceleration at heights below 0.5 R ⊙ . CMEs which originate from compact sources low in the corona are more impulsive and reach higher peak accelerations at smaller heights. These findings can be explained by the Lorentz force, which drives the CME accelerations and decreases with height and CME size.
Using high time cadence images from the STEREO EUVI, COR1 and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 CMEs in comparison with associated flares and filament eruptions.We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events which were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration, and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME accleration ends after the SXR peak time (for 77% of the events).In ∼60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than ±5 min, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.
Using combined STEREO-A and STEREO-B EUVI, COR1 and COR2 data, we derive deprojected CME kinematics and CME 'true' mass evolutions for a sample of 25 events that occurred during December 2007 to April 2011. We develop a fitting function to describe the CME mass evolution with height. The function considers both the effect of the coronagraph occulter, at the beginning of the CME evolution, and an actual mass increase. The latter becomes important at about 10 to 15 R and is assumed to mostly contribute up to 20 R . The mass increase ranges from 2 to 6% per R and, is positively correlated to the total CME mass. Due to the combination of COR1 and COR2 mass measurements, we are able to estimate the 'true' mass value for very low coronal heights (< 3 R ).Based on the deprojected CME kinematics and initial ejected masses, we derive the kinetic energies and propelling forces acting on the CME in the low corona (< 3 R ). The derived CME kinetic energies range between 1.0 − 66 · 10 23 J, and the forces range between 2.2 − 510 · 10 14 N.
We investigate the relationship between the main acceleration phase of coronal mass ejections (CMEs) and the particle acceleration in the associated flares as evidenced in Reuven Ramaty High Energy Solar Spectroscopic Imager non-thermal X-rays for a set of 37 impulsive flare-CME events. Both the CME peak velocity and peak acceleration yield distinct correlations with various parameters characterizing the flare-accelerated electron spectra. The highest correlation coefficient is obtained for the relation of the CME peak velocity and the total energy in accelerated electrons (c = 0.85), supporting the idea that the acceleration of the CME and the particle acceleration in the associated flare draw their energy from a common source, probably magnetic reconnection in the current sheet behind the erupting structure. In general, the CME peak velocity shows somewhat higher correlations with the non-thermal flare parameters than the CME peak acceleration, except for the spectral index of the accelerated electron spectrum, which yields a higher correlation with the CME peak acceleration (c ≈ −0.6), indicating that the hardness of the flare-accelerated electron spectrum is tightly coupled to the impulsive acceleration process of the rising CME structure. We also obtained high correlations between the CME initiation height h 0 and the non-thermal flare parameters, with the highest correlation of h 0 to the spectral index δ of flare-accelerated electrons (c ≈ 0.8). This means that CMEs erupting at low coronal heights, i.e., in regions of stronger magnetic fields, are accompanied by flares that are more efficient at accelerating electrons to high energies. In the majority of events (∼80%), the non-thermal flare emission starts after the CME acceleration, on average delayed by ≈6 minutes, in line with the standard flare model where the rising flux rope stretches the field lines underneath until magnetic reconnection sets in. We find that the current sheet length at the onset of magnetic reconnection is 21 ± 7 Mm. The flare hard X-ray peaks are well synchronized with the peak of the CME acceleration profile, and in 75% of the cases they occur within ±5 minutes. Our findings provide strong evidence for the tight coupling between the CME dynamics and the particle acceleration in the associated flare in impulsive events, with the total energy in accelerated electrons being closely correlated with the peak velocity (and thus the kinetic energy) of the CME, whereas the number of electrons accelerated to high energies is decisively related to the CME peak acceleration and the height of the pre-eruptive structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.