The present study evaluated the efficacy of superstimulation with p-FSH (Folltropin) before the ovum pick-up (OPU) on IVP in lactating and nonlactating Holstein donors. A total of 30 Holstein cows (15 lactating and 15 nonlactating) were blocked by lactation status to one of two groups (control or p-FSH), in a cross-over design. On a random day of the estrous cycle, all cows received an intravaginal progesterone device and 2.0 mg IM of estradiol benzoate (Day 0). Cows in the control group received no further treatment, whereas cows in the p-FSH group received a total dosage of 200 mg of p-FSH on Days 4 and 5 in four decreasing doses 12 hours apart (57, 57, 43, and 43 mg). On Day 7, the progesterone device was removed, and OPU was conducted in both groups (40 hours after the last p-FSH injection in the p-FSH-treated group). There was no difference between groups (P = 0.92) in the numbers of follicles that were aspirated per OPU session (17.2 ± 1.3 vs. 17.1 ± 1.1 in control and p-FSH-treated cows, respectively); however, p-FSH-treated cows had a higher (P < 0.001) percentage of medium-sized follicles (6-10 mm) at the time of the OPU (55.1%; 285/517) than control cows (20.8%; 107/514). Although recovery rate was lower (60.0%, 310/517 vs. 69.8%, 359/514; P = 0.002), p-FSH-treated cows had a higher blastocyst production rate (34.5%, 89/258 vs. 19.8%, 55/278; P < 0.001) and more transferable embryos per OPU session were produced in the p-FSH group (3.0 ± 0.5 vs. 1.8 ± 0.4; P = 0.02). Regardless of treatment, non-lactating cows had a higher blastocyst rate (41.9%, 106/253 vs. 13.4%, 38/283; P = 0.001) and produced more transferable embryos per OPU session (3.5 ± 0.5 vs. 1.3 ± 0.3; P = 0.003) than lactating cows. Thus, superstimulation of Holstein donors with p-FSH before OPU increased the efficiency of IVP. In addition, non-lactating donors had higher percentage of in vitro blastocyst development and produced more embryos per OPU session than lactating cows.
Plasma FSH profiles, in vitro embryo production (IVP) after ovum pickup (OPU), and establishment of pregnancy with IVP embryos were compared in untreated Holstein oocyte donors and those superstimulated with multiple injections or a single intramuscular (IM) injection of porcine FSH (pFSH) in hyaluronan (HA). Plasma FSH profiles were determined in 23 heifers randomly allocated to one of four groups. Controls received no treatment, whereas the F200 group received 200 mg of pFSH in four doses, 12 hours apart. The F200HA and F300HA groups received 200- or 300-mg pFSH in 5 mL or 7.5 mL, respectively of a 0.5% HA solution by a single IM injection. Plasma FSH levels were determined before the first pFSH treatment and every 6 hours over 96 hours. All data were analyzed by orthogonal contrasts. Circulating FSH area under curve (AUC) in pFSH-treated animals was greater than that in the control group (P = 0.02). Although the AUC did not differ among FSH-treated groups (P = 0.56), the total period with elevated plasma FSH was greater in the F200 group than in the HA groups (P < 0.0001). However, the F300HA group had a greater AUC than the F200HA group (P = 0.006), with a similar total period with elevated plasma FSH (P = 0.17). The IVP was performed in 90 nonlactating Holstein cows randomly allocated to one of the four treatment groups as in the first experiment. A greater proportion of medium-sized (6-10 mm) follicles was observed in cows receiving pFSH, regardless of the treatment group (P < 0.0001). Also, numbers of follicles (P = 0.01), cumulus-oocyte complexes (COCs) retrieved (P = 0.01) and matured (P = 0.02), cleavage rates (P = 0.002), and blastocysts produced per OPU session (P = 0.06) were greater in cows receiving pFSH, regardless of the treatment group. Cows in the F200HA group had a greater recovery rate (P = 0.009), number of COCs cultured (P = 0.04), and blastocysts produced per OPU session (P = 0.06) than cows in the F300HA group. Similar pregnancy rates were observed 50 to 60 days after transferring IVP embryos from donors in the different treatment groups (P > 0.05). In conclusion, a single IM injection of pFSH combined in 0.5% HA resulted in similar plasma FSH profiles as twice-daily pFSH treatments. Treatment of nonlactating donors with pFSH, with or without HA, resulted in increased IVP over untreated controls. A single dose of 200 mg of pFSH in 0.5% HA resulted in greater IVP than 300-mg pFSH in HA. Finally, pregnancy rates with IVP embryos were similar, regardless donor treatment.
The prepartum supplementation of dairy cows with β-carotene was evaluated. Cows were blocked by parity and expected calving date and assigned to a treatment: β-carotene (1.2 g/cow per d) or control (no supplementation). The same total mixed ration batch was offered to all cows, and β-carotene was top dressed to individual cows once per day. The data set contained 283 Holsteins that received a treatment for >14 d (29.1±6.9 d). Frequency distributions were analyzed with the GENMOD procedure of SAS using logistic regression for binomial data. Continuous variables were analyzed with the MIXED procedure of SAS. Within parity, nonparametric estimates of the survivor function for reproductive variables were computed using the product-limit method of the Kaplan-Meier method with the LIFETEST procedure of SAS. Plasma β-carotene concentration before supplementation was similar between supplemented and nonsupplemented cows (2.99µg/mL) and peaked at 3.26±0.175µg/mL on d -15±2.4 precalving for supplemented cows (2.62±0.168µg/mL for control). Colostrum density, milk yield, and milk composition were similar between treatments. β-Carotene tended to increase milk protein content from 2.90 to 2.96% and to decrease the proportion of primiparous cows with a milk fat to protein ratio >1.5 from 22.6 to 6.4%. The proportion of primiparous and multiparous cows with difficult calving, metritis, progesterone >1 ng/mL at 21 d and at 42 d in lactation, % conception at first service, and % pregnancy at 90 and 150 d in lactation were similar between treatments. A trend for decreased incidence of somatic cell count >200,000 cells/mL was present in multiparous cows supplemented with β-carotene (38.9% vs. 28.1%). β-Carotene was associated with a reduction in the proportion of multiparous cows with retained placenta 12 h postpartum from 29.9 to 21.7%; time of placenta release was 392 min (340 to 440) for β-carotene and 490 min (395 to 540) for control (median and 95% confidence interval). For primiparous cows, placenta release was not affected by β-carotene (incidence was 15.4%). The intervals from calving to first estrus, to first service, and to conception were not affected by β-carotene supplementation in either parity. However, independent of treatment, cows with improved reproductive efficiency had increased postpartum β-carotene concentration in plasma. The prepartum supplementation of β-carotene increased plasma concentration around calving. No response in milk yield or reproductive performance was detected. Beta-carotene supplementation was associated with a lower incidence of retained placenta in multiparous cows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.