A theoretical and experimental study of the behaviour of the correlation satellites arising during 5s photoionization of xenon is presented. Many-body perturbation theory and configuration-interaction techniques have been applied to calculate the wavefunctions of the Xe II ionic states. An expression for the angular distribution parameter of the photoelectrons taking into account final-ionic-state configuration interaction is derived. Photoionization cross sections and angular distribution parameters were calculated for the 5s main line and the majority of the satellite lines and compared with our high-resolution measurements and earlier lower resolution measurements.The differences in the angular distribution parameter dependence on the photon energy for the 5s main line and satellites were analysed in terms of their origin. The most important mechanisms are: interference of several photoionization channels characterizing different orbital momenta of the photoelectron, the mixture of terms with different total orbital momenta in the final ionic state, and the dependence of the photoelectron wavefunctions on the total momentum of the photoelectrons.
The Kr 4s-electron photoionization cross section as a function of the excitingphoton energy in the range between 30 eV and 90 eV was calculated using the configuration interaction (CI) technique in intermediate coupling. In the calculations the 4p spin-orbital interaction and corrections due to higher orders of perturbation theory (the so-called Coulomb interaction correlational decrease) were considered. Energies of Kr n states were calculated and agree with spectroscopic data within less than 10 meV. For some of the Kr 11 states new assignments were suggested on the basis of the largest component among the calculated CI wavefunctions.
Absolute cross sections for the transitions of the Kr atom into the 4s land 4p4nl states of the Kr + ion were measured in the 4s-electron threshold region by photon-induced fluorescence spectroscopy (PIFS). The cross sections for the transitions of the Kr atom into the 4sland 4p4nl states were also calculated, as weIl as the 4p4nln'I' doubly excited states, in the frame of LS-coupling many-body technique. The cross sections of the doubly-excited atomic states were used to illustrate the pronounced contributions of the latter to the photoionization process, evident from the measurements. The comparison of theory and experiment led to conclusions about the origin of the main features observed in the experiment.
Photon-induced fluorescence spectroscopy was applied for the first time to investigate the anisotropy of VUV radiation emitted from Kr II satellite states with total angular momentum J 3 2 after the photoionization of the Kr atom by linearly polarized synchrotron radiation near the 4s threshold. The measurements showed that the sign of the alignment parameter is practically independent of the exciting-photon energy for the ionic state with J = 5 2 , whereas for the states with J = 3 2 the alignment parameter changes sign with varying energy. Simple formulae connecting the angular distribution parameter and the alignment parameter with the kinematics of our experiment and with quantities describing the dynamics of the photoionization were derived in closed form. Partial and total cross sections for the photoionization of 4p, 4s and several satellite levels were calculated taking into account many-electron correlations and doubly-excited states. For the satellite states with J 3 2 the dependence of the angular distribution parameter on the exciting-photon energy was calculated. Good overall agreement between theory and experiment was obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.