The prediction of rice yields plays a major role in reducing food security problems in India and also suggests that government agencies manage the over or under situations of production. Advanced machine learning techniques are playing a vital role in the accurate prediction of rice yields in dealing with nonlinear complex situations instead of traditional statistical methods. In the present study, the researchers made an attempt to predict the rice yield through support vector regression (SVR) models with various kernels (linear, polynomial, and radial basis function) for India overall and the top five rice producing states by considering influence parameters, such as the area under cultivation and production, as independent variables for the years 1962–2018. The best-fitted models were chosen based on the cross-validation and hyperparameter optimization of various kernel parameters. The root-mean-square error (RMSE) and mean absolute error (MAE) were calculated for the training and testing datasets. The results revealed that SVR with various kernels fitted to India overall, as well as the major rice producing states, would explore the nonlinear patterns to understand the precise situations of yield prediction. This study will be helpful for farmers as well as the central and state governments for estimating rice yield in advance with optimal resources.
There is a need to comprehend real-world problems that are marked by ambiguity and inflexibility. By taking into account the indeterminacies and inconsistencies, DUS transformation has been taken to Neutrosophic Weibull distribution and DUS-Neutrosophic Weibull distribution is proposed. The probability density function is unimodal and decreasing in nature. Several statistical properties have been studied. The parameters of the proposed distribution are estimated using the maximum likelihood method. The proposed distribution has been validated on a real data set. The estimates are found to be more accurate than the classical distributions.
Crop yield forecasting is becoming more essential in the current scenario when food security must be assured, despite the problems posed by an increasingly globalized community and other environmental challenges such as climate change and natural disasters. Several factors influence crop yield prediction, which has complex non-linear relationships. Hence, to study these relationships, machine learning methodologies have been increasingly adopted from conventional statistical methods. With wheat being a primary and staple food crop in the Indian community, ensuring the country’s food security is crucial. In this paper, we study the prediction of wheat yield for India overall and the top wheat-producing states with a comparison. To accomplish this, we use Multivariate Adaptive Regression Splines (MARS) after extracting the main features by Principal Component Analysis (PCA) considering the parameters such as area under cultivation and production for the years 1962–2018. The performance is evaluated by error analyses such as RMSE, MAE, and R2. The best-fitted MARS model is chosen using cross-validation and user-defined parameter optimization. We find that the MARS model is well suited to India as a whole and other top wheat-producing states. A comparative result is obtained on yield prediction between India overall and other states, wherein the state of Rajasthan has a better model than other major wheat-producing states. This research will emphasize the importance of improved government decision-making as well as increased knowledge and robust forecasting among Indian farmers in various states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.