Deep neural networks have been continuously evolving towards larger and more complex models to solve challenging problems in the field of AI. The primary bottleneck that restricts new network architectures is memory consumption. Running or training DNNs heavily relies on the hardware (CPUs, GPUs, or FPGA) which are either inadequate in terms of memory or hard-to-extend. This would further make it difficult to scale. In this paper, we review some of the latest memory footprint reduction techniques which would enable faster low model complexity. Additionally, it improves accuracy by increasing the batch size and developing wider and deeper neural networks with the same set of hardware resources. The paper emphasizes on memory optimization methods specific to CNN and RNN training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.